Comparison of tests for embeddings.

It is possible to compare results for the classical tests for embeddings of chaotic data with the results of a recently proposed test. The classical tests, which depend on real numbers (fractal dimensions, Lyapunov exponents) averaged over an attractor, are compared with a topological test that depends on integers. The comparison can only be done for mappings into three dimensions. We find that the classical tests fail to predict when a mapping is an embedding and when it is not. We point out the reasons for this failure, which are not restricted to three dimensions.

[1]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[2]  R. Gilmore,et al.  Embeddings of low-dimensional strange attractors: topological invariants and degrees of freedom. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Christophe Letellier,et al.  Global topology from an embedding , 2007, 0705.3427.

[4]  R. Gilmore,et al.  When are projections also embeddings? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  I. Moroz The Extended Malkus–Robbins Dynamo as a Perturbed Lorenz System , 2005 .

[6]  Robert Gilmore,et al.  Embeddings of a strange attractor into R3. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Lefranc,et al.  Topological signature of deterministic chaos in short nonstationary signals from an optical parametric oscillator. , 2004, Physical review letters.

[8]  Robert Gilmore,et al.  The Topology of Chaos , 2003 .

[9]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[10]  G. Mindlin,et al.  Pattern dynamics in a Be´nard-Marangoni convection experiment , 1996 .

[11]  Solari,et al.  Topologically inequivalent embeddings. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[13]  Mancini,et al.  Dynamical patterns in Bénard-Marangoni convection in a square container. , 1993, Physical review letters.

[14]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[15]  P. L. Gal,et al.  Complex bi-orthogonal decomposition of a chain of coupled wakes , 1992 .

[16]  R. Gilmore,et al.  Topological analysis and synthesis of chaotic time series , 1992 .

[17]  X. Zeng,et al.  Estimating the fractal dimension and the predictability of the atmosphere , 1992 .

[18]  Pierre Glorieux,et al.  Improved correlation dimension estimates through change of variable , 1992 .

[19]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  Ulrich Parlitz,et al.  Identification of True and Spurious Lyapunov Exponents from Time Series , 1992 .

[21]  D. T. Kaplan,et al.  Direct test for determinism in a time series. , 1992, Physical review letters.

[22]  Gabriel B. Mindlin,et al.  Topological analysis of chaotic time series data from the Belousov-Zhabotinskii reaction , 1991 .

[23]  Ruedi Stoop,et al.  Calculation of Lyapunov exponents avoiding spurious elements , 1991 .

[24]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[25]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[26]  D. Ruelle,et al.  The Claude Bernard Lecture, 1989 - Deterministic chaos: the science and the fiction , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[28]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[29]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[30]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[31]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[32]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[33]  P. Grassberger,et al.  Estimation of the Kolmogorov entropy from a chaotic signal , 1983 .

[34]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[35]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[36]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[37]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[38]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[39]  K. Robbins,et al.  A new approach to subcritical instability and turbulent transitions in a simple dynamo , 1977, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[41]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[42]  Irene M. Moroz,et al.  The Malkus-robbins dynamo with a Nonlinear Series Motor , 2004, Int. J. Bifurc. Chaos.

[43]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[44]  Irene M. Moroz,et al.  The Malkus-robbins dynamo with a Linear Series Motor , 2003, Int. J. Bifurc. Chaos.

[45]  C. Letellier,et al.  NONLINEAR DYNAMICS : WHAT FOR ? , 1998 .

[46]  Solari,et al.  Relative rotation rates for driven dynamical systems. , 1988, Physical review. A, General physics.

[47]  Yasuji Sawada,et al.  Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems , 1987 .

[48]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[49]  Shinji Watanabe,et al.  Nature (London , 1975 .

[50]  Physics Letters , 1962, Nature.