Conditional oscillation of Euler type half-linear differential equations with unbounded coefficients

The oscillatory properties of half-linear second order Euler type differential equations are studied, where the coefficients of the considered equations can be unbounded. For these equations, we prove an oscillation criterion and a non-oscillation one. We also mention a corollary which shows how our criteria improve the known results. In the corollary, the criteria give an explicit oscillation constant.

[1]  P. Hasil,et al.  Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients , 2014 .

[2]  Petr Hasil,et al.  Oscillation of half-linear differential equations with asymptotically almost periodic coefficients , 2013 .

[3]  P. Hasil,et al.  Oscillation and Nonoscillation of Asymptotically Almost Periodic Half-Linear Difference Equations , 2013 .

[4]  O. Doslý,et al.  Euler Type Half-Linear Differential Equation with Periodic Coefficients , 2013 .

[5]  K. Schmidt Oscillation of the perturbed Hill equation and the lower spectrum of radially periodic Schrodinger operators in the plane , 1999 .

[6]  G. Teschl,et al.  Relative Oscillation Theory, Weighted Zeros of the Wronskian, and the Spectral Shift Function , 2007, math/0703574.

[7]  O. Doslý,et al.  Perturbations of Half-Linear Euler Differential Equation and Transformations of Modified Riccati Equation , 2012 .

[8]  Xianhua Tang,et al.  Oscillation of second order half-linear difference equations (I) , 2014 .

[9]  O. Doslý,et al.  Linearized Riccati Technique and (Non-)Oscillation Criteria for Half-Linear Difference Equations , 2007 .

[10]  P. Hasil,et al.  Critical oscillation constant for half-linear differential equations with periodic coefficients , 2011 .

[11]  Karl Michael Schmidt,et al.  Critical Coupling Constants and Eigenvalue Asymptotics of Perturbed Periodic Sturm–Liouville Operators , 2000 .

[12]  P. Hasil,et al.  Critical Oscillation Constant for Difference Equations with Almost Periodic Coefficients , 2012 .

[13]  Fritz Gesztesy,et al.  Perturbative Oscillation Criteria and Hardy‐Type Ineqalities , 1998 .

[14]  O. Doslý,et al.  Nonprincipal solutions in oscillation criteria for half-linear differential equations , 2010 .

[15]  Petr Hasil,et al.  Conditional Oscillation of Half-Linear Differential Equations with Coefficients Having Mean Values , 2014 .

[16]  A. Kneser,et al.  Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen , 1893 .

[17]  Mauro Marini,et al.  On oscillatory solutions of quasilinear differential equations , 2006 .

[18]  G. Teschl,et al.  Relative oscillation theory for Sturm–Liouville operators extended☆ , 2007, 0707.3451.

[19]  Michal Veselý,et al.  Construction of almost periodic functions with given properties , 2011 .

[20]  Ravi P. Agarwal,et al.  Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations , 2002 .

[21]  Gerald Teschl,et al.  Effective Prüfer angles and relative oscillation criteria , 2007, 0709.0127.

[22]  Jirí Vítovec,et al.  Critical oscillation constant for Euler-type dynamic equations on time scales , 2014, Appl. Math. Comput..

[23]  Ondřej Došlý,et al.  Half-linear differential equations , 2005 .

[24]  Oscillation criteria for second-order nonlinear difference equations of Euler type , 2012 .

[25]  Michal Veselý,et al.  Construction of almost periodic sequences with given properties , 2008 .