Joint MT and CSEM data inversion using a multiplicative cost function approach

We have developed an inversion algorithm for jointly inverting controlled-source electromagnetic (CSEM) data and magnetotelluric (MT) data. It is well known that CSEM and MT data provide complementary information about the subsurface resistivity distribution; hence, it is useful to derive earth resistivity models that simultaneously and consistently fit both data sets. Because we are dealing with a large-scale computational problem, one usually uses an iterative technique in which a predefined cost function is optimized. One of the issues of this simultaneous joint inversion approach is how to assign the relative weights on the CSEM and MT data in constructing the cost function. We propose a multiplicative cost function instead of the traditional additive one. This function does not require an a priori choice of the relative weights between these two data sets. It will adaptively put CSEM and MT data on equal footing in the inversion process. The inversion is accomplished with a regularized Gauss-Newton m...

[1]  Joseph B. Keller,et al.  A Theorem on the Conductivity of a Composite Medium , 1964 .

[2]  L. B. Pedersen,et al.  Magnetotelluric measurements across the Sorgenfrei-Tornquist Zone in southern Sweden and Denmark , 2009 .

[3]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[4]  Aria Abubakar,et al.  Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners , 2006 .

[5]  Vladimir Druskin,et al.  Optimal finite difference grids and rational approximations of the square root I. Elliptic problems , 2000 .

[6]  Michael S. Zhdanov,et al.  Regularization Analysis of Three-dimensional Magnetotelluric Inversion , 2007 .

[7]  Kerry Key,et al.  Mapping offshore sedimentary structure using electromagnetic methods and terrain effects in marine magnetotelluric data , 2009 .

[8]  R. N. Edwards,et al.  12. Electrical Exploration Methods for the Seafloor , 1991 .

[9]  Aria Abubakar,et al.  Inversion algorithms for large-scale geophysical electromagnetic measurements , 2009 .

[10]  T. M. Habashy,et al.  Sensitivity Study of Multi-sources Receivers CSEM Data for TI-anisotropy Medium using 2.5D Forward and Inversion Algorithm , 2010 .

[11]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[12]  Michael Commer,et al.  New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .

[13]  P. M. Berg,et al.  Contrast Source Inversion Method: State of Art , 2001 .

[14]  William Rodi,et al.  Joint 3D Inversion of Marine CSEM And MT Data , 2007 .

[15]  A. Abubakar,et al.  Multiplicative regularization for contrast profile inversion , 2003 .

[16]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[17]  S. Constable,et al.  Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system , 1998 .

[18]  Lucy MacGregor,et al.  Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .

[19]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[20]  Mark E. Everett,et al.  Electric dipole fields over an anisotropic seafloor: theory and application to the structure of 40 ma pacific ocean lithosphere , 1999 .

[21]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[22]  Daniele Colombo,et al.  Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging , 2007 .

[23]  Colin Farquharson,et al.  Constructing piecewise-constant models in multidimensional minimum-structure inversions , 2008 .

[24]  Aria Abubakar,et al.  2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements , 2008 .

[25]  David Andreis,et al.  Characterisation of Anisotropic Resistivity from Marine CSEM Data , 2008 .

[26]  Alan D. Chave,et al.  Offshore Electromagnetic Surveying Techniques , 1986 .

[27]  Chester J. Weiss,et al.  Mapping thin resistors and hydrocarbons with marine EM methods: Insights from 1D modeling , 2006 .

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  René-Édouard Plessix,et al.  Resistivity imaging with controlled-source electromagnetic data: depth and data weighting , 2008 .

[30]  P. M. Berg,et al.  Extended contrast source inversion , 1999 .

[31]  William Rodi,et al.  Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion , 2001 .

[32]  Lucy MacGregor,et al.  Use of marine controlled‐source electromagnetic sounding for sub‐basalt exploration , 2000 .

[33]  A. Abubakar,et al.  A General Framework for Constraint Minimization for the Inversion of Electromagnetic Measurements , 2004 .

[34]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[35]  Aria Abubakar,et al.  Iterative reconstructions of electrical conductivity from multiexperiment low-frequency electromagnetic data , 2000 .

[36]  M. Virgilio,et al.  Simultaneous Joint Inversion of MMT and Seismic Data for Sub-basalt Exploration on the Atlantic Margin, Norway , 2009 .

[37]  G. Michael Hoversten,et al.  Marine magnetotellurics for petroleum exploration, Part II: Numerical analysis of subsalt resolution , 1998 .

[38]  Michael Commer,et al.  Optimal conductivity reconstruction using three‐dimensional joint and model‐based inversion for controlled‐source and magnetotelluric data , 2008 .