Characterization of Jacobian varieties in terms of soliton equations

Pour Ω dans le demi-espace superieur de Siegel h g , soit X=C g /(Z g +ΩZ g ) la variete abelienne principalement polarisee correspondante et soit θ(Z)=θ(Z,Ω)=∑ m e Z gexp(2Πi t mz+πi t mΩm) la fonction theta de Riemann pour X. Les deux conditions (A) et (B) pour X sont equivalentes: A) 1) il existe des vecteurs a 1 ,a 2 ,a 3 ∈C g , a 1 ¬=0, et une forme quadratique Q(t)=∑ i/j=1 3 Q ij t i t j ,Q ij ∈C, tel que pour ζ∈C g τ(t)=τ(t,ξ)=exp(Q(t))θ(t 1 a 1 +t 2 a 2 +t 3 a 3 +ξ) donne une solution a l'equation de Kadomtsev-Petviashvili sous la forme d'Hirota: (D 1 4 +3D 2 2 -4D 1 D 3 )τ•τ=0; 2) le diviseur Θ de X est irreductible. B) X est isomorphe a la variete jacobienne d'une courbe lisse complete de genre g sur C

[1]  G. E. Welters A criterion for Jacobi varieties , 1984 .

[2]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1928 .

[3]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[4]  G. Geer The schottky problem , 1985 .

[5]  D. Mumford Tata Lectures on Theta I , 1982 .

[6]  D. Mumford,et al.  The irreducibility of the space of curves of given genus , 1969 .

[7]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[8]  Ryogo Hirota,et al.  Direct method of finding exact solutions of nonlinear evolution equations , 1976 .

[9]  David Mumford,et al.  Curves and their Jacobians , 1975 .

[10]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[11]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[12]  John D. Fay On the even-order vanishing of Jacobian theta functions , 1984 .

[13]  H. McKean,et al.  The spectrum of Hill's equation , 1975 .

[14]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[15]  R. Gunning Some curves in abelian varities , 1982 .

[16]  B. Dubrovin THE KADOMCEV-PETVIAŠVILI EQUATION AND THE RELATIONS BETWEEN THE PERIODS OF HOLOMORPHIC DIFFERENTIALS ON RIEMANN SURFACES , 1982 .

[17]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .

[18]  M. Mulase Cohomological structure in soliton equations and Jacobian varieties , 1984 .

[19]  G. Segal,et al.  Loop groups and equations of KdV type , 1985 .

[20]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[21]  Y. Manin Algebraic aspects of nonlinear differential equations , 1979 .

[22]  E. Arbarello,et al.  On a Set of Equations Characterizing Riemann Matrices , 1984 .