Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders
暂无分享,去创建一个
[1] W. Eberhard,et al. WEB-BUILDING BEHAVIOR OF ANAPID, SYMPHYTOGNATHI D AND MYSMENID SPIDERS (ARANEAE ) , 1986 .
[2] William G. Eberhard,et al. Early stages of orb construction by Philoponella vicina, Leucauge mariana, and Nephila clavipes (Araneae, Uloboridae and Tetragnathidae), and their phylogenetic implications , 1990 .
[3] W. Shear,et al. Spiders : webs, behavior, and evolution , 1986 .
[4] William G. Eberhard,et al. The web of Uloborus diversus (Araneae: Uloboridae) , 2009 .
[5] Rüdiger Wehner,et al. On Being Small: Brain Allometry in Ants , 2006, Brain, Behavior and Evolution.
[6] R. Wehner. ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.
[7] M. König. Beiträge zur Kenntnis des Netzbaus orbiteler Spinnen , 2010 .
[8] H. Peters. Studien am netz der kreuzspinne (Aranea Diadema L.) , 1937, Zeitschrift für Morphologie und Ökologie der Tiere.
[9] B. Rensch,et al. Evolution above the species level , 1959 .
[10] Cornelia I. Bargmann,et al. Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.
[11] R. Beutel,et al. Miniaturisation effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. , 2009, Arthropod structure & development.
[12] Interneurones involved in stridulatory pattern generation in the grasshopper Chorthippus mollis (Charp.) , 1996, The Journal of experimental biology.
[13] B. J. Cole. Size and behavior in ants: Constraints on complexity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[14] Thomas Hesselberg,et al. Ontogenetic Changes in Web Design in Two Orb‐Web Spiders , 2010 .
[15] S. Laughlin,et al. Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring , 2005, Current Biology.
[16] S. Zschokke. Early stages of orb web construction in Araneus diadematus Clerck , 1996 .
[17] J. Eisenberg,et al. RELATIVE BRAIN SIZE AND FEEDING STRATEGIES IN THE CHIROPTERA , 1978, Evolution; international journal of organic evolution.
[18] W. Eberhard,et al. BEHAVIORAL CHARACTERS FOR THE HIGHER CLASSIFICATION OF ORB‐WEAVING SPIDERS , 1982, Evolution; international journal of organic evolution.
[19] R. Beutel,et al. Strepsipteran brains and effects of miniaturization (Insecta) , 2005 .
[20] G. Hormiga,et al. Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses—a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture , 2011, Cladistics.
[21] N. Platnick,et al. A revision of the temperate South American and Australasian spiders of the family Anapidae (Araneae, Araneoidea). Bulletin of the AMNH ; no. 190 , 1989 .
[22] W. Eberhard. Effects of gravity on temporary spiral construction byLeucauge mariana (Araneae: Araneidae) , 1987, Journal of Ethology.
[23] J. Niven,et al. Are Bigger Brains Better? , 2009, Current Biology.
[24] W. Eberhard. Miniaturized orb-weaving spiders: behavioural precision is not limited by small size , 2007, Proceedings of the Royal Society B: Biological Sciences.
[25] R. Hingston. A naturalist in Himalaya , 1920 .
[26] S. Laughlin,et al. Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.
[27] S. Laughlin,et al. An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[28] William G. Eberhard,et al. Computer Simulation of Orb-Web Construction , 1969 .
[29] Jeremy E. Niven,et al. The rapid mandible strike of a termite soldier , 2008, Current Biology.
[30] P. Howse. Design and Function in the Insect Brain , 1974 .
[31] J. Coddington. The Genera of the Spider Family Theridiosomatidae , 1986 .
[32] N. Emery. Cognition, Evolution, and Behavior Cognition, Evolution, and Behavior. 2nd edn. By Sara J. Shettleworth. Oxford: Oxford University Press (2009). Pp. xiii+700. Price $59.95 paperback. , 2010, Animal Behaviour.
[33] Fritz Vollrath,et al. Analysis and interpretation of orb spider exploration and web-building behavior , 1992 .
[34] N. Platnick,et al. A review of the spider genus Anapis (Araneae, Anapidae), with a dual cladistic analysis. American Museum novitates ; no. 2663 , 1978 .
[35] M. Seid,et al. The Allometry of Brain Miniaturization in Ants , 2011, Brain, Behavior and Evolution.
[36] J. Coddington. The Monophyletic Origin of the Orb Web , 1986 .
[37] T. Clutton‐Brock,et al. Brain size and ecology in small mammals and primates. , 1980, Proceedings of the National Academy of Sciences of the United States of America.
[38] E. Martins. The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .
[39] Fritz Vollrath,et al. Unfreezing the behaviour of two orb spiders , 1995, Physiology & Behavior.
[40] G. Head. SELECTION ON FECUNDITY AND VARIATION IN THE DEGREE OF SEXUAL SIZE DIMORPHISM AMONG SPIDER SPECIES (CLASS ARANEAE) , 1995, Evolution; international journal of organic evolution.
[41] E. Wilson. The relation between caste ratios and division of labor in the ant genus Pheidole (Hymenoptera: Formicidae) , 1984, Behavioral Ecology and Sociobiology.
[42] J. Coddington,et al. Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea) , 1998 .
[43] J. Eisenberg,et al. The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior , 1981 .
[44] C. Craig,et al. The Significance of Spider Size to the Diversification of Spider-Web Architectures and Spider Reproductive Modes , 1987, The American Naturalist.
[45] THIEMO KRINK,et al. A virtual robot to model the use of regenerated legs in a web-building spider , 1999, Animal Behaviour.
[46] Gertrud Mayer. Untersuchungen über Herstellung und Struktur des Radnetzes von Aranea diadema und Zilla x‐notata mit besonderer Berücksichtigung des Unterschiedes von Jugend‐ und Altersnetzen , 2010 .
[47] F. Barth,et al. Biomaterial systems for mechanosensing and actuation , 2009, Nature.
[48] G. Striedter. Principles of brain evolution. , 2005 .