Approaching prosthesis infection environment: Development of an innovative in vitro Staphylococcus aureus biofilm model

[1]  C. Guillaume,et al.  Human Osteoblast-Conditioned Media Can Influence Staphylococcus aureus Biofilm Formation , 2022, International journal of molecular sciences.

[2]  S. Gangloff,et al.  Staphylococcus aureus Strain-Dependent Biofilm Formation in Bone-Like Environment , 2021, Frontiers in Microbiology.

[3]  K. Rumbaugh,et al.  The importance of understanding the infectious microenvironment. , 2021, The Lancet. Infectious diseases.

[4]  Z. Podlesek,et al.  The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister Cells and Population Wide Tolerance , 2020, Frontiers in Microbiology.

[5]  Z. Ren,et al.  Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. , 2020, Trends in microbiology.

[6]  E. De Vecchi,et al.  Ability of adhesion and biofilm formation of pathogens of periprosthetic joint infections on titanium-niobium nitride (TiNbN) ceramic coatings , 2020, Journal of Orthopaedic Surgery and Research.

[7]  Antonia F. Chen,et al.  Biofilms in Periprosthetic Joint Infections: A Review of Diagnostic Modalities, Current Treatments, and Future Directions , 2020, The Journal of Knee Surgery.

[8]  Y. Liu,et al.  Environmental factors modulate biofilm formation by Staphylococcus aureus , 2020, Science progress.

[9]  M. Si-Tahar,et al.  CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. , 2019, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[10]  T. Coenye,et al.  Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. , 2019, Trends in microbiology.

[11]  C. Batailler,et al.  Interaction Between Staphylococcal Biofilm and Bone: How Does the Presence of Biofilm Promote Prosthesis Loosening? , 2019, Front. Microbiol..

[12]  S. Gill,et al.  Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy” , 2019, Bone Research.

[13]  R. Hancock,et al.  Bone Environment Influences Irreversible Adhesion of a Methicillin-Susceptible Staphylococcus aureus Strain , 2018, Front. Microbiol..

[14]  D. Campoccia,et al.  Implant infections: adhesion, biofilm formation and immune evasion , 2018, Nature Reviews Microbiology.

[15]  Shu Li,et al.  Therapeutic Targeting of the Staphylococcus aureus Accessory Gene Regulator (agr) System , 2018, Front. Microbiol..

[16]  L. Coelho,et al.  Staphylococcus aureus and Staphylococcus epidermidis infections on implants. , 2017, The Journal of hospital infection.

[17]  D. Amanatullah,et al.  The biological response to orthopaedic implants for joint replacement: Part I: Metals. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[18]  Emmanuel Gibon,et al.  The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[19]  S. Gangloff,et al.  Staphylococcus aureus Biofilms and their Impact on the Medical Field , 2017 .

[20]  Ameya A. Mashruwala,et al.  Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus , 2017, eLife.

[21]  T. Foster,et al.  Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus* , 2016, The Journal of Biological Chemistry.

[22]  J. O’Gara,et al.  Untangling the Diverse and Redundant Mechanisms of Staphylococcus aureus Biofilm Formation , 2016, PLoS pathogens.

[23]  T. Giese,et al.  The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms , 2016, BMC Musculoskeletal Disorders.

[24]  A. Namvar,et al.  Detection of genes involved in biofilm formation in Staphylococcus aureus isolates , 2016, GMS hygiene and infection control.

[25]  J. Ariza,et al.  The changing epidemiology of bacteraemic osteoarticular infections in the early 21st century. , 2015, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[26]  J. O’Gara,et al.  Methicillin resistance and the biofilm phenotype in Staphylococcus aureus , 2015, Front. Cell. Infect. Microbiol..

[27]  C. Duncan,et al.  The challenge of methicillin resistant staphylococcal infection after total hip replacement: overlooked or overstated? , 2014, The bone & joint journal.

[28]  Robin Patel,et al.  Prosthetic Joint Infection , 2014, Clinical Microbiology Reviews.

[29]  J. McCourt,et al.  Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. , 2014, FEMS microbiology letters.

[30]  Timothy J. Foster,et al.  Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus , 2013, Nature Reviews Microbiology.

[31]  M. Doble,et al.  Characteristics of bacterial biofilm associated with implant material in clinical practice , 2013 .

[32]  Mary E. Powers,et al.  Staphylococcus aureus biofilms , 2011, Virulence.

[33]  A. Boskey,et al.  Chapter 6. The Composition of Bone , 2009 .

[34]  F. Tenover,et al.  Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. , 2009, The Journal of antimicrobial chemotherapy.

[35]  Blaise R. Boles,et al.  Interconnections between Sigma B, agr, and Proteolytic Activity in Staphylococcus aureus Biofilm Maturation , 2009, Infection and Immunity.

[36]  M. Kitzis,et al.  Continuous Cefazolin Infusion To Treat Bone and Joint Infections: Clinical Efficacy, Feasibility, Safety, and Serum and Bone Concentrations , 2008, Antimicrobial Agents and Chemotherapy.

[37]  Philip S. Stewart,et al.  Physiological heterogeneity in biofilms , 2008, Nature Reviews Microbiology.

[38]  K. Rice,et al.  The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[39]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[40]  Hidemi Kurihara,et al.  Staphylococcus aureus Susceptibility to Innate Antimicrobial Peptides, (cid:2) -Defensins and CAP18, Expressed by Human Keratinocytes , 2003 .

[41]  S. Foster,et al.  σB Modulates Virulence Determinant Expression and Stress Resistance: Characterization of a Functional rsbU Strain Derived from Staphylococcus aureus 8325-4 , 2002, Journal of bacteriology.

[42]  C. Potera Forging a Link Between Biofilms and Disease , 1999, Science.

[43]  S. Foster,et al.  The Staphylococcus aureus Alternative Sigma Factor ςB Controls the Environmental Stress Response but Not Starvation Survival or Pathogenicity in a Mouse Abscess Model , 1998 .

[44]  J. Kanis Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism , 1994 .

[45]  D. Schurman,et al.  Cefazolin concentrations in bone and synovial fluid. , 1978, The Journal of bone and joint surgery. American volume.

[46]  M. Bergeron,et al.  Bactericidal Activity and Pharmacology of Cefazolin , 1973, Antimicrobial Agents and Chemotherapy.

[47]  S. Kaplan Recent lessons for the management of bone and joint infections. , 2014, The Journal of infection.

[48]  P. François,et al.  Role of Plasma and Extracellular Matrix Proteins in the Physiopathology of Foreign Body Infections , 1998, Annals of vascular surgery.