Fracture mode, microstructure and temperature-dependent elastic moduli for thermoelectric composites of PbTe–PbS with SiC nanoparticle additions

Twenty-six (Pb0.95Sn0.05Te)0.92(PbS)0.08–0.055% PbI2–SiC nanoparticle (SiCnp) composite thermoelectric specimens were either hot pressed or pulsed electric current sintered (PECS). Bloating (a thermally induced increase in porosity, P, for as-densified specimens) was observed during annealing at temperatures >603 K for hot-pressed specimens and PECS-processed specimens from wet milled powders, but in contrast seven out of seven specimens densified by PECS from dry milled powders showed no observable bloating following annealing at temperatures up to 936 K. In this study, bloating in the specimens was accessed via thermal annealing induced changes in (i) porosity measured by scanning electron microscopy on fractured specimen surfaces, (ii) specimen volume and (iii) elastic moduli. The moduli were measured by resonant ultrasound spectroscopy. SiCnp additions (1–3.5 vol.%) changed the fracture mode from intergranular to transgranular, inhibited grain growth, and limited bloating in the wet milled PECS specimens. Inhibition of bloating likely occurs due to cleaning of contamination from powder particle surfaces via PECS processing which has been reported previously in the literature.

[1]  M. Kanatzidis,et al.  The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating , 2013, Journal of Materials Science.

[2]  E. Case,et al.  Weibull modulus and fracture strength of highly porous hydroxyapatite. , 2013, Journal of the mechanical behavior of biomedical materials.

[3]  Jizhou Kong,et al.  Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films , 2012, Journal of Sol-Gel Science and Technology.

[4]  M. Kanatzidis,et al.  Bloating in (Pb0.95Sn0.05Te)0.92(PbS)0.08-0.055%PbI2 Thermoelectric Specimens as a Result of Processing Conditions , 2012, Journal of Electronic Materials.

[5]  E. Case,et al.  The effect of indentation-induced microcracks on the elastic modulus of hydroxyapatite , 2012, Journal of Materials Science.

[6]  F. Ren,et al.  Part I: porosity dependence of the Weibull modulus for hydroxyapatite and other brittle materials. , 2012, Journal of the mechanical behavior of biomedical materials.

[7]  E. A. Payzant,et al.  The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .

[8]  E. Lara‐Curzio,et al.  Temperature-dependent Young's modulus, shear modulus and Poisson's ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials , 2012 .

[9]  G. Rujijanagul,et al.  Improvement in dielectric and mechanical performance of CaCu3.1Ti4O12.1 by addition of Al2O3 nanoparticles , 2012, Nanoscale Research Letters.

[10]  Christopher D. Haines,et al.  Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles , 2011 .

[11]  C. Chen,et al.  Effects of SiC Nanodispersion on the Thermoelectric Properties of p-Type and n-Type Bi2Te3-Based Alloys , 2011 .

[12]  E. Lavernia,et al.  The influence of oxygen and nitrogen contamination on the densification behavior of cryomilled copper powders during spark plasma sintering , 2011 .

[13]  C. Charitidis,et al.  Influence of nano-inclusions’ grain boundaries on crack propagation modes in materials , 2011 .

[14]  Jun Jiang,et al.  Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering , 2011 .

[15]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[16]  H. Cho,et al.  Thermoelectric Properties of Nb-Doped Ordered Mesoporous TiO2 , 2011 .

[17]  Y. Sakka,et al.  Influence of uni and bi-modal SiC composition on mechanical properties and microstructure of reaction-bonded SiC ceramics , 2010 .

[18]  M. Yamada,et al.  Relationship between the cone crack and fracture mode in ceramics under high-velocity-projectile impact , 2010 .

[19]  D. Dunand,et al.  Solid-state foaming of Ti-6Al-4V by creep or superplastic expansion of argon-filled pores , 2010 .

[20]  A. Sellitto,et al.  Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach , 2010 .

[21]  Chang‐an Wang,et al.  Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics , 2010 .

[22]  Edward J. Timm,et al.  Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials , 2010 .

[23]  Vamsi Krishna Balla,et al.  Understanding compressive deformation in porous titanium , 2010 .

[24]  A. Mukhopadhyay,et al.  Spark Plasma‐Sintered WC–ZrO2–Co Nanocomposites with High Fracture Toughness and Strength , 2010 .

[25]  M. Dresselhaus,et al.  Effects of nanoscale porosity on thermoelectric properties of SiGe , 2010 .

[26]  C. Nan,et al.  Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics , 2010 .

[27]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[28]  T. Chotard,et al.  Acoustic characterization and microstructure of high zirconia electrofused refractories , 2009 .

[29]  D. Dunand,et al.  Porous NiTi by creep expansion of argon-filled pores , 2009 .

[30]  Xiangyang Huang,et al.  Effects of nano-TiO2 dispersion on the thermoelectric properties offilled-skutterudite Ba0.22Co4Sb12 , 2009 .

[31]  Fei Ren,et al.  Resonant ultrasound spectroscopy measurement of Young's modulus, shear modulus and Poisson's ratio as a function of porosity for alumina and hydroxyapatite , 2009 .

[32]  A. Kohyama,et al.  Development of multi-functional NITE-porous SiC for ceramic insulators , 2009 .

[33]  F. Ren,et al.  Agglomeration during wet milling of LAST (lead–antimony–silver–tellurium) powders , 2009 .

[34]  M. Kanatzidis,et al.  Temperature-dependent elastic moduli of lead telluride-based thermoelectric materials , 2009 .

[35]  J. Heberlein,et al.  Wear behavior in SiC–TiX multilayered nanocomposite coatings , 2008 .

[36]  M. Kanatzidis,et al.  The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy , 2008 .

[37]  F. Ren,et al.  Characterization of dry milled powders of LAST (lead–antimony–silver–tellurium) thermoelectric material , 2007 .

[38]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[39]  M. Berveiller,et al.  Micro–macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials , 2007 .

[40]  Jingfeng Li,et al.  Effect of nano‐SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals , 2006 .

[41]  H. Schock,et al.  Weibull analysis of the biaxial fracture strength of a cast p-type LAST-T thermoelectric material , 2006 .

[42]  Paolo Colombo,et al.  Conventional and novel processing methods for cellular ceramics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  P. Krysl,et al.  Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals , 2005 .

[44]  E. Fuller,et al.  Microcrack Evolution in Alumina Ceramics: Experiment and Simulation , 2005 .

[45]  L. Vandeperre,et al.  Effects of porosity on the measured fracture energy of brittle materials , 2004 .

[46]  F. Tancret,et al.  Modelling the toughness of porous sintered glass beads with various fracture mechanisms , 2003 .

[47]  J. Fricke,et al.  Electrical properties of PZT aerogels , 2002 .

[48]  E. Case,et al.  The porosity dependence of the dielectric constant for sintered hydroxyapatite. , 2002, Journal of biomedical materials research.

[49]  W. Stahel,et al.  Log-normal Distributions across the Sciences: Keys and Clues , 2001 .

[50]  H. Scherrer,et al.  Preparation and transport properties of polycrystalline Bi and Bi–SiO2 nanocomposites , 2000 .

[51]  H. Hahn,et al.  Microstructural development during final-stage sintering of nanostructured zirconia based ceramics , 2000 .

[52]  K. R. Anderson,et al.  Surface oxide debonding in field assisted powder sintering , 1999 .

[53]  Louise Poissant Part I , 1996, Leonardo.

[54]  A. Boccaccini Comment on “Effective Elastic Moduli of Porous Ceramic Materials” , 1994 .

[55]  S. Risbud,et al.  Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process , 1994 .

[56]  E. Case,et al.  Comparison of mechanical fatigue with thermal fatigue in ceramics , 1993 .

[57]  K. Yamazaki,et al.  Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes , 1992 .

[58]  I. Chen,et al.  Fatigue Deformation Mechanisms of Zirconia Ceramics , 1992 .

[59]  I-Wei Chen,et al.  Fatigue of Yttria‐Stabilized Zirconia: I, Fatigue Damage, Fracture Origins, and Lifetime Prediction , 1991 .

[60]  E. Case,et al.  Mechanical effects of thermal cycling on US and Australian Synroc B , 1985 .

[61]  E. Case,et al.  Characterization of microcracks in YCrO3 using small-angle neutron scattering and elasticity measurements , 1984 .

[62]  E. Case,et al.  Microcracking in Large-grain Al2O3 , 1981 .

[63]  E. Case,et al.  Microcracking behavior of monoclinic GD2O3 , 1981 .

[64]  E. Case,et al.  Room-temperature fracture energy of monoclinic Gd2O3 , 1981 .

[65]  N. Low Formation of cellular-structure glass with carbonate compounds and natural mica powders , 1981 .

[66]  J. E. Bailey Mechanical properties of ceramics , 1979, Nature.

[67]  S. L. Dole,et al.  Microcracking of Monoclinic HfO2 , 1978 .

[68]  T. Kawabata,et al.  the relationship between fracture toughness and transgranular fracture in an Al-6.0% Zn-2.5% Mg alloy , 1977 .

[69]  H. Belson,et al.  Elastic Constants, Thermal Expansion, and Debye Temperature of Lead Telluride , 1968 .

[70]  N. G. Einspruch,et al.  Elastic Constants of Compound Semiconductors—ZnS, PbTe, GaSb , 1963 .

[71]  F. A. Hummel,et al.  High‐Temperature Mechanical Properties of Ceramic Materials: II, Beta‐Eucryptite , 1959 .

[72]  F. A. Hummel,et al.  High‐Temperature Mechanical Properties of Ceramic Materials: I, Magnesium Dititanate , 1958 .

[73]  Marc Huger,et al.  High temperature characterisation of cordierite-mullite refractory by ultrasonic means , 2008 .

[74]  E. Case,et al.  The influence of the microstructure on the hardness of sintered hydroxyapatite , 2003 .

[75]  Hejun Li,et al.  Damping characteristics of CVI-densified carbon–carbon composites , 2000 .

[76]  John L. Sarrao,et al.  Resonant ultrasound spectroscopy : applications to physics, materials measurements, and nondestructive evaluation , 1997 .

[77]  Hiroaki Yanagida,et al.  Microstructure dependence of mechanical and dielectric strengths—i. porosity , 1991 .

[78]  E. Case,et al.  MICROCRACK HEALING DURING THE TEMPERATURE CYCLING OF SINGLE PHASE CERAMICS. , 1983 .

[79]  Douglas H. Norrie,et al.  An introduction to finite element analysis , 1978 .