Steady entanglement out of thermal equilibrium

We study two two-level atomic quantum systems (qubits) placed close to a body held at a temperature different from that of the surrounding walls. While at thermal equilibrium the two-qubit dynamics is characterized by non-entangled steady thermal states, we show that the absence of thermal equilibrium may bring to the generation of entangled steady states. Remarkably, this entanglement emerges from the two-qubit dissipative dynamic itself, without any further external action on the two qubits, suggesting a new protocol to create and protect entanglement which is intrinsically robust to environmental effects.

[1]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[2]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[3]  X. Yi,et al.  Nonequilibrium thermal entanglement in a three-qubit XX model , 2009, 0908.0592.

[4]  S Stringari,et al.  Measurement of the temperature dependence of the Casimir-Polder force. , 2007, Physical review letters.

[5]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[6]  V. Svetovoy,et al.  Casimir-Lifshitz force out of thermal equilibrium , 2007, 0706.1850.

[7]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[8]  A. Carvalho,et al.  Distant entanglement protected through artificially increased local temperature , 2011, 1101.2688.

[9]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[10]  Lian-Ao Wu,et al.  Quantum effects in thermal conduction: Nonequilibrium quantum discord and entanglement , 2011, 1105.1206.

[11]  B. Bellomo,et al.  Dynamics of an elementary quantum system in environments out of thermal equilibrium , 2012, 1205.6784.

[12]  M. Antezza,et al.  Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies , 2010, 1012.5183.

[13]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[14]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[15]  Z. Ficek,et al.  Delayed sudden birth of entanglement , 2008, 0802.4287.

[16]  Giuseppe Compagno,et al.  Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling , 2014, 1408.6881.

[17]  M. Znidaric Entanglement in stationary nonequilibrium states at high energies , 2011, 1112.4415.

[18]  Guang-Can Guo,et al.  Experimental demonstration of photonic entanglement collapse and revival. , 2009, Physical review letters.

[19]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .

[20]  M. S. Zubairy,et al.  Entanglement generation between two atoms via surface modes , 2011 .

[21]  Sabrina Maniscalco,et al.  Protecting entanglement via the quantum Zeno effect. , 2007, Physical review letters.

[22]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[23]  G. Bimonte,et al.  Scattering approach to Casimir forces and radiative heat transfer for nanostructured surfaces out of thermal equilibrium , 2009, 0909.2170.

[24]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[25]  Luis Quiroga,et al.  Nonequilibrium thermal entanglement , 2007 .

[26]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[27]  P. Ben-Abdallah,et al.  Three-body amplification of photon heat tunneling. , 2012, Physical review letters.

[28]  Mehran Kardar,et al.  Nonequilibrium electromagnetic fluctuations: heat transfer and interactions. , 2011, Physical review letters.

[29]  Zbigniew Ficek,et al.  Quantum interference and coherence: Theory and experiments , 2005 .

[30]  G. Agarwal Quantum statistical theories of spontaneous emission and their relation to other approaches , 1974 .

[31]  S. Stringari,et al.  New asymptotic behavior of the surface-atom force out of thermal equilibrium. , 2005, Physical review letters.

[32]  D. Felbacq,et al.  Quantum systems in a stationary environment out of thermal equilibrium , 2012, 1205.6089.

[33]  Mauro Antezza,et al.  Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies , 2011, 1108.4650.

[34]  Paul Skrzypczyk,et al.  Virtual qubits, virtual temperatures, and the foundations of thermodynamics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  J. J. Hope,et al.  Engineering steady states using jump-based feedback for multipartite entanglement generation , 2011, 1106.2704.

[36]  C. cohen-tannoudji,et al.  Photons and Atoms: Introduction to Quantum Electrodynamics , 1989 .

[37]  L Martin-Moreno,et al.  Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. , 2010, Physical review letters.