Widths of embeddings in function spaces

We study the approximation, Gelfand and Kolmogorov numbers of embeddings in function spaces of Besov and Triebel-Lizorkin type. Our aim here is to provide sharp estimates in several cases left open in the literature and give a complete overview of the known results. We also add some historical remarks.

[1]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[2]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[3]  E. Gluskin NORMS OF RANDOM MATRICES AND WIDTHS OF FINITE-DIMENSIONAL SETS , 1984 .

[4]  W. A. Light n -WIDTHS IN APPROXIMATION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 7) , 1985 .

[5]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[6]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[7]  A. Pietsch,et al.  s-Numbers of operators in Banach spaces , 1974 .

[8]  Sophie Dispa Intrinsic Descriptions Using Means of Differences for Besov Spaces on Lipschitz Domains , 2003 .

[9]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[10]  R. S. Ismagilov,et al.  DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS , 1974 .

[11]  S. Sobolev On a theorem in functional analysis , 1938 .

[12]  A. Pietsch History of Banach Spaces and Linear Operators , 2007 .

[13]  Y. Meyer Wavelets and Operators , 1993 .

[14]  H. Triebel Theory Of Function Spaces , 1983 .

[15]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[16]  A. Pietsch Eigenvalue distribution of compact operators , 1986 .

[17]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[18]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[19]  Hans Triebel,et al.  Local means and wavelets in function spaces , 2007 .

[20]  UDC,et al.  ON KOLMOGOROV DIAMETERS OF OCTAHEDRA , 2010 .

[21]  Vyacheslav S. Rychkov,et al.  On Restrictions and Extensions of the Besov and Triebel–Lizorkin Spaces with Respect to Lipschitz Domains , 1999 .

[22]  Nigel J. Kalton COMPACT p-CONVEX SETS , 1977 .

[23]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[24]  R. DeVore,et al.  Multiscale decompositions on bounded domains , 2000 .

[25]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[26]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[27]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[28]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[29]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[30]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[31]  H. Triebel Function Spaces and Wavelets on Domains , 2008 .

[32]  Leszek Skrzypczak,et al.  Approximation and entropy numbers of compact Sobolev embeddings , 2006 .

[33]  J. Bastero,et al.  An extension of Milman's reverse Brunn-Minkowski inequality , 1995, math/9501210.

[34]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[35]  B. S. Kašin,et al.  DIAMETERS OF SOME FINITE-DIMENSIONAL SETS AND CLASSES OF SMOOTH FUNCTIONS , 1977 .

[36]  M. Fowler,et al.  Function Spaces , 2022 .

[37]  F. Rellich,et al.  Ein Satz über mittlere Konvergenz , 1930 .

[38]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[39]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[40]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[41]  G. Lorentz,et al.  Constructive approximation : advanced problems , 1996 .

[42]  Benno Fuchssteiner Verallgemeinerte Konvexitätsbegriffe und der Satz von Krein-Milman , 1970 .

[43]  J. Peetre New thoughts on Besov spaces , 1976 .

[44]  H. Triebel Theory of Function Spaces III , 2008 .

[45]  V. Tikhomirov,et al.  DIAMETERS OF SETS IN FUNCTION SPACES AND THE THEORY OF BEST APPROXIMATIONS , 1960 .

[46]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[47]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[48]  B. Bollobás THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .

[49]  Benno Fuchssteiner Verallgemeinerte Konvexitätsbegriffe undLp-Räume , 1970 .

[50]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[51]  R. DeVore,et al.  BESOV SPACES ON DOMAINS IN Rd , 1993 .

[52]  Sophie Dispa,et al.  Intrinsic characterizations of Besov spaces on Lipschitz domains , 2003 .

[53]  António M. Caetano,et al.  About Approximation Numbers in Function Spaces , 1998 .