Influence of the clay coating properties on the dilation behavior of sandstones

Long-time exposure on historical buildings can enhance significant differences in stone durability according to their intrinsic properties, structure and composition. This study aims to identify stone parameters inducing macroscopical behavior i.e. hygric dilation. The content, nature and properties of the clay coating of several Triassic siliceous sandstones were assessed. A special emphasis was put on cation exchange capacity and specific surface area measurements using different methods (BET, EGME and MBA). Hygric free swelling and mercury intrusion porosimetry measurements enabled the assessment of macroscale behavior and pore structure. Results showed very slight differences in clay coating properties and clay content. However, hygric free swelling coefficient values were well correlated to clay minerals when the clay content was taken into account together with the total specific surface area of the clay coating. Clay intracrystalline swelling had a relevant impact on the macroscale behavior of the stones submitted to relative humidity cycles.

[1]  Robert Charlier,et al.  Chemo–mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits , 2004 .

[2]  A. Lutenegger,et al.  Determination of Surface Area of Fine-Grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method , 2002 .

[3]  H. J. Olivier,et al.  A new engineering-geological rock durability classification , 1979 .

[4]  Franz Hirschwald Handbuch der bautechnischen gesteinsprüfung : für beamte der materialprüfungsanstalten und baubehörden, Steinbruchingenieure, Architekten und Bauingenieure, sowie für Studierende der technischen Hochschulen , 1912 .

[5]  J. Delgado Rodrigues Evaluación del comportamiento expansivo de las rocas y su interés en conservación , 2001 .

[6]  M. D. Heilman,et al.  THE ETHYLENE GLYCOL MONOETHYL ETHER (EGME) TECHNIQUE FOR DETERMINING SOIL‐SURFACE AREA , 1965 .

[7]  B. Lanson,et al.  Influence of the Outer Surface Layers of Crystals on the X-Ray Diffraction Intensity of Basal Reflections , 2004 .

[8]  J. Stucki,et al.  Changes in the CEC of a soil smectite–kaolinite clay fraction as induced by structural iron reduction and iron coatings dissolution , 2006 .

[9]  B. Velde Origin and mineralogy of clays: clays and the environment. , 1995 .

[10]  B. Lanson Decomposition of Experimental X-Ray Diffraction Patterns (Profile Fitting): A Convenient Way to Study Clay Minerals , 1997 .

[11]  C. Thomachot,et al.  Dilation of building materials submitted to frost action , 2007, Geological Society, London, Special Publications.

[12]  J. Syers,et al.  Deferration Effect on Structural Ferrous-Ferric Iron Ratio and CEC of Vermiculites and Soils , 1969 .

[13]  G. Lagaly,et al.  H. van Olphen: An Introduction to Clay Colloid Chemistry, 2nd Ed. John Wiley & Sons, New York, London, Sydney, Toronto 1977. 318 Seiten, Preis: £ 15.–, $ 25.– , 1978 .

[14]  F. G. Bell,et al.  Durability of carbonate rock as building stone with comments on its preservation , 1993 .

[15]  Giuseppe Cultrone,et al.  Swelling damage in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain) , 2008 .

[16]  L. Caner,et al.  Advances in characterization of soil clay mineralogy using X‐ray diffraction: from decomposition to profile fitting , 2009 .

[17]  The engineering geology of clay minerals: swelling, shrinking and mudrock breakdown , 1986 .

[18]  Siegfried Siegesmund,et al.  Insolation weathering and hygric dilatation: two competitive factors in stone degradation , 2004 .

[19]  B. Velde,et al.  Decomposition of X-Ray Diffraction Patterns: A Convenient Way to Describe Complex I/S Diagenetic Evolution , 1992 .

[20]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[21]  M. D. Heilman,et al.  ETHYLENE GLYCOL MONOETHYL ETHER FOR DETERMINING SURFACE AREA OF SILICATE MINERALS , 1965 .

[22]  C. Rodríguez-Navarro,et al.  Procesos de alteración asociados al contenido de minerales arcillosos en materiales pétreos , 2001 .

[23]  B. Lanson,et al.  Characterization of the End of Smectite-to-Illite Transformation: Decomposition of X-Ray Patterns , 1992 .

[24]  W. S. Ginell,et al.  THE ROLE OF CLAYS IN THE DECAY OF ANCIENT EGYPTIAN LIMESTONE SCULPTURES , 1997 .

[25]  G. Scherer,et al.  Role of clay minerals in the physicomechanical deterioration of sandstone , 2008 .

[26]  O. Pejon,et al.  Analysis of cyclic swelling of mudrocks , 2002 .

[27]  A. Malkawi,et al.  Swelling-shrinkage behavior of natural expansive clays , 1996 .

[28]  Olivier Buzzi,et al.  The place of expansive clays in the framework of unsaturated soil mechanics. , 2009 .

[29]  Barbara Lubelli,et al.  Sodium chloride damage to porous building materials , 2006 .

[30]  G. Brindley,et al.  Crystal Structures of Clay Minerals and their X-ray Identification , 1982 .

[31]  Robert C. Reynolds,et al.  X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .

[32]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .

[33]  W. S. Abdullah,et al.  Influence of pore water chemistry on the swelling behavior of compacted clays , 1999 .

[34]  L. Hossner,et al.  Transformation of Chlorite to Smectite Through Regularly Interstratified Intermediates 1 , 1981 .

[35]  G. Scherer,et al.  Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones , 2004 .

[36]  S. Siegesmund,et al.  Length changes of sandstones caused by salt crystallization , 2007, Geological Society, London, Special Publications.

[37]  J. Zhuang,et al.  Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. , 2002, Chemosphere.

[38]  J. Méring L'interférence des rayons X dans les systèmes à stratification désordonée , 1949 .

[39]  Miguel Gómez-Heras,et al.  The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones , 2008 .