Ab-initio simulation of elastic constants for some ceramic materials

Abstract.Athermal elasticity for some ceramic materials (α-Al2O3, SiC (α and β phases), TiO2 (rutile and anatase), hexagonal AlN and TiB2, cubic BN and CaF2, and monoclinic ZrO2) have been investigated via density functional theory. Energy-volume equation-of-state computations to obtain the zero pressure equilibrium volume and bulk modulus as well as computations of the full elastic constant tensor of these ceramics at the experimental zero pressure volume have been performed. The present results for the single crystal elasticity are in good agreement with experiments both for the aggregate properties (bulk and shear modulus) and the elastic anisotropy. In contrast, a considerable discrepancy for the zero pressure bulk modulus of some ceramics evaluated from the energy-volume fit to the computational zero pressure volume has been observed.

[1]  Jianzhong Jiang,et al.  High-pressure polymorphs of anatase TiO 2 , 2000 .

[2]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[3]  R. Orlando,et al.  Structural, electronic and elastic properties of some fluoride crystals: an ab initio study , 2003 .

[4]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[5]  R. Kato,et al.  First-principles calculation of the elastic stiffness tensor of aluminium nitride under high pressure , 1994 .

[6]  C. R. A. Catlow,et al.  Brillouin scattering and theoretical studies of high-temperature disorder in fluorite crystals , 1978 .

[7]  William M. Robertson,et al.  Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia , 1991 .

[8]  Z. Levine,et al.  Erratum: Photoelastic and elastic properties of the fluorite structure materials, LiF, and Si [Phys. Rev. B 68, 155120 (2003)] , 2004 .

[9]  K. Parlinski,et al.  Lattice dynamics and elasticity of silver thiogallate (AgGaS2) from ab initio calculations , 2001 .

[10]  M. Grimsditch,et al.  The elastic constants of silicon carbide: A Brillouin-scattering study of 4H and 6H SiC single crystals , 1997 .

[11]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[12]  B. Bouhafs,et al.  Structural, electronic and optical properties of fluorite-type compounds , 2005, The European Physical Journal B.

[13]  Julian D. Maynard,et al.  Elastic constants and crystal anisotropy of titanium diboride , 1997 .

[14]  E. S. Zouboulis,et al.  Elastic constants of boron nitride , 1994 .

[15]  A Mocofanescu,et al.  Stimulated Brillouin Scattering , 2003 .

[16]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[17]  M. Catti,et al.  Elastic constants and electronic structure of fluorite (CaF2): an ab initio Hartree-Fock study , 1991 .

[18]  D. Dandekar,et al.  Strength of titanium diboride under shock wave loading , 1993 .

[19]  R. Angel The high-pressure, high-temperature equation of state of calcium fluoride, CaF2 , 1993 .

[20]  Georg Kresse,et al.  First-principles calculations to describe zirconia pseudopolymorphs , 1999 .

[21]  S. Alterovitz,et al.  A Promising Boron-Carbon-Nitrogen Thin Film , 1990, Materials Science Forum.

[22]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[23]  O. Anderson,et al.  Elastic constants of corundum up to 1825 K , 1989 .

[24]  Takayuki Sota,et al.  First-principles study on electronic and elastic properties of BN, AlN, and GaN , 1998 .

[25]  Heinz Schulz,et al.  High‐pressure single‐crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer , 1978 .

[26]  P. Ho,et al.  Pressure dependence of the elastic constants and an experimental equation of state for CaF2 , 1967 .

[27]  Z. Levine,et al.  Photoelastic and Elastic Properties of The Fluorite Structure Materials, LiF, and Si , 2003 .

[28]  H. J. Mcskimin,et al.  Pulse Superposition Method for Measuring Ultrasonic Wave Velocities in Solids , 1961 .

[29]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[30]  G. Steinle‐Neumann,et al.  The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases , 2007 .

[31]  J. Boettger High-precision, all-electron, full-potential calculation of the equation of state and elastic constants of corundum , 1997 .

[32]  Graeme Ackland,et al.  Structure and elasticity of MgO at high pressure , 1997 .

[33]  A Mocofanescu,et al.  Stimulated brillouin scattering : fundamentals and applications , 2003 .

[34]  F. Birch Elasticity and Constitution of the Earth's Interior , 1952 .

[35]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[36]  D. Gerlich Elastic Constants of Strontium Fluoride Between 4.2 and 300°K , 1964 .

[37]  Ching,et al.  Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. , 1994, Physical review. B, Condensed matter.

[38]  Kian Meng Lim,et al.  First-principles calculations of structural and mechanical properties of Cu6Sn5 , 2006 .

[39]  R. French,et al.  Vibrational Spectroscopy of Aluminum Nitride , 1993 .

[40]  Murli H. Manghnani,et al.  Elastic constants of single‐crystal rutile under pressures to 7.5 kilobars , 1969 .

[41]  F. Bechstedt,et al.  Ab initio study of structural, dielectric, and dynamical properties of GaN , 1998 .

[42]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.

[43]  H. Aourag,et al.  Prediction study of elastic properties under pressure effect for zincblende BN, AlN, GaN and InN , 2004 .

[44]  V. Milman,et al.  Elastic properties of TiB2 and MgB2 , 2001 .

[45]  Methfessel,et al.  Calculated elastic constants and deformation potentials of cubic SiC. , 1991, Physical review. B, Condensed matter.

[46]  Bechstedt,et al.  Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations. , 1994, Physical review. B, Condensed matter.

[47]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[48]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[49]  Heine,et al.  Optimized and transferable nonlocal separable ab initio pseudopotentials. , 1993, Physical review. B, Condensed matter.

[50]  V. Milman,et al.  Elasticity of hexagonal BeO , 2001 .

[51]  J. Gladden,et al.  Reconciliation of ab initio theory and experimental elastic properties of Al2O3 , 2004 .

[52]  O. Anderson,et al.  Elasticity of TiO2 rutile to 1800 K , 1998 .

[53]  Kim,et al.  Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. , 1996, Physical review. B, Condensed matter.

[54]  Vlado I. Matkovich,et al.  Boron and Refractory Borides , 1977 .

[55]  Ching,et al.  Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. , 1995, Physical review. B, Condensed matter.

[56]  Nicholas M. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .