Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage.

Highly porous Ni3Sn2 microcages composed of tiny nanoparticles were synthesized by a facile template-free solvothermal method (based on Ostwald ripening and etching mechanism) for use as anode materials for high-capacity and high-rate-capability Li-ion and Na-ion batteries. The Ni3Sn2 porous microcages exhibit highly stable and substantial discharge capacities of the amount to 700 mA h g(-1) after 400 cycles at 0.2C and 530 mA h g(-1) after 1000 cycles at 1C for Li-ion battery anode. For Na-ions storage performance, a reversible capacity of approximate 270 mA h g(-1) is stably maintained at 1C during the first 300 cycles.

[1]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[2]  Xifei Li,et al.  Three‐Dimensional Porous Core‐Shell Sn@Carbon Composite Anodes for High‐Performance Lithium‐Ion Battery Applications , 2012 .

[3]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[4]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[5]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[6]  H. Munakata,et al.  Highly patterned cylindrical Ni–Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries , 2010 .

[7]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[8]  Fei Liu,et al.  Recent developments in the chemical synthesis of inorganic porous capsules , 2009 .

[9]  B. Scrosati,et al.  A high capacity, template-electroplated NiSn intermetallic electrode for lithium ion battery , 2011 .

[10]  G. F. Ortiz,et al.  Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries , 2013 .

[11]  Yan Yu,et al.  Li Storage in 3D Nanoporous Au‐Supported Nanocrystalline Tin , 2011, Advanced materials.

[12]  H. Zeng,et al.  Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. , 2007, Journal of the American Chemical Society.

[13]  Y. Yoon,et al.  Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries , 2003 .

[14]  Wei Wang,et al.  Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces , 2011 .

[15]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[16]  Kepeng Song,et al.  Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. , 2014, Nano letters.

[17]  Joachim Maier,et al.  Thermodynamics of electrochemical lithium storage. , 2013, Angewandte Chemie.

[18]  Richard Van Noorden The rechargeable revolution: A better battery , 2014, Nature.

[19]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[20]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[21]  J. Yao,et al.  One‐Pot Solution Synthesis of Cubic Cobalt Nanoskeletons , 2009 .

[22]  K. Kanamura,et al.  Three-dimensionally ordered macroporous Ni–Sn anode for lithium batteries , 2009 .

[23]  Jun Liu,et al.  Iron fluoride hollow porous microspheres: facile solution-phase synthesis and their application for Li-ion battery cathodes. , 2014, Chemistry.

[24]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[25]  Liangbing Hu,et al.  Atomic-layer-deposition oxide nanoglue for sodium ion batteries. , 2014, Nano letters.

[26]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[27]  Bruno Scrosati,et al.  High‐Rate, Long‐Life Ni–Sn Nanostructured Electrodes for Lithium‐Ion Batteries , 2007 .

[28]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[29]  W. Ostwald Studien über die Bildung und Umwandlung fester Körper , 1897 .

[30]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[31]  Yi Wang,et al.  Carbon‐Encapsulated Pyrite as Stable and Earth‐Abundant High Energy Cathode Material for Rechargeable Lithium Batteries , 2014, Advanced materials.

[32]  M. Obrovac,et al.  (Cu6Sn5)1−xCx active/inactive nanocomposite negative electrodes for Na-ion batteries , 2013 .

[33]  Jun Liu,et al.  Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries. , 2011, Chemical communications.

[34]  Chan-Hwa Chung,et al.  Highly porous dendritic Ni–Sn anodes for lithium-ion batteries , 2013 .

[35]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[36]  Hui Xia,et al.  Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. , 2009, Journal of the American Chemical Society.

[37]  W. Ostwald,et al.  Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper , 1900 .

[38]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[39]  Xinbing Zhao,et al.  Solvothermal synthesis and ex situ XRD study of nano-Ni3Sn2 used as an anode material for lithium-ion batteries , 2007 .

[40]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.