Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas.

Different alkylamine molecules were post-synthetically tethered to the unsaturated Cr(III) centers in the metal-organic framework MIL-101. The resultant metal-organic frameworks show almost no N2 adsorption with significantly enhanced CO2 capture under ambient conditions as a result of the interaction between amine groups and CO2 molecules. Given the extraordinary stability, high CO2 uptake, ultrahigh CO2 /N2 selectivity, and mild regeneration energy, MIL-101-diethylenetriamine holds exceptional promise for post-combustion CO2 capture and CO2 /N2 separation.

[1]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[2]  Qiang Xu,et al.  Porous metal-organic frameworks as platforms for functional applications. , 2011, Chemical communications.

[3]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[4]  Yi He,et al.  Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants , 2013, Scientific Reports.

[5]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[6]  A. Matzger,et al.  Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[7]  Randall Q. Snurr,et al.  Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules , 2009 .

[8]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[9]  R. Banerjee,et al.  Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. , 2011, Chemical communications.

[10]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[11]  Nathaniel L Rosi,et al.  Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. , 2009, Journal of the American Chemical Society.

[12]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[13]  J. F. Stoddart,et al.  Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. , 2013, Journal of the American Chemical Society.

[14]  David Farrusseng,et al.  Metall‐organische Gerüste für die Katalyse , 2009 .

[15]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[16]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[17]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[18]  S. Sandler,et al.  Metal-organic framework MIL-101 for adsorption and effect of terminal water molecules: from quantum mechanics to molecular simulation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[19]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[20]  Jing Li,et al.  Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. , 2012, Angewandte Chemie.

[21]  Hong‐Cai Zhou,et al.  High‐Throughput Analytical Model to Evaluate Materials for Temperature Swing Adsorption Processes , 2013, Advanced materials.

[22]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[23]  Hong‐Cai Zhou,et al.  Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[24]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[25]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[26]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[27]  G. Guo,et al.  Functionalizing the pore wall of chiral porous metal-organic frameworks by distinct -H, -OH, -NH2, -NO2, -COOH shutters showing selective adsorption of CO2, tunable photoluminescence, and direct white-light emission. , 2012, Chemical communications.

[28]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[29]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[30]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[31]  Qiuju Yan,et al.  Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents. , 2013, Chemical communications.

[32]  Qiang Xu,et al.  Mesoporous Metal‐Organic Frameworks with Size‐tunable Cages: Selective CO2 Uptake, Encapsulation of Ln3+ Cations for Luminescence, and Column‐Chromatographic Dye Separation , 2011, Advanced materials.

[33]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[34]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[35]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[36]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[37]  A. Cooper,et al.  Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. , 2012, Journal of the American Chemical Society.

[38]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[39]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[40]  Steven Chu,et al.  Carbon Capture and Sequestration , 2016 .

[41]  Hong-Ru Fu,et al.  Porous ctn-type boron imidazolate framework for gas storage and separation. , 2013, Chemistry.

[42]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[43]  C. Serre,et al.  Porous Chromium Terephthalate MIL‐101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis , 2009 .

[44]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[45]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[46]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[47]  G. Scheffknecht,et al.  CO2 Capture for Fossil Fuel‐Fired Power Plants , 2011 .

[48]  S. Bordiga,et al.  Tailoring metal-organic frameworks for CO2 capture: the amino effect. , 2011, ChemSusChem.

[49]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.