New insights into the antimicrobial action and protective therapeutic effect of tirapazamine towards Escherichia coli-infected mice.

[1]  J. Shrinet,et al.  Chikungunya virus infection in Aedes aegypti is modulated by L-cysteine, taurine, hypotaurine and glutathione metabolism , 2023, PLoS neglected tropical diseases.

[2]  Zaizhao Wang,et al.  Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. , 2023, Environmental pollution.

[3]  Yan Liu,et al.  Young Exosome Bio‐Nanoparticles Restore Aging‐Impaired Tendon Stem/Progenitor Cell Function and Reparative Capacity , 2023, Advances in Materials.

[4]  Fei Xia,et al.  Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy , 2023, International journal of biological sciences.

[5]  J. Snape,et al.  Predicting selection for antimicrobial resistance in UK wastewater and aquatic environments: Ciprofloxacin poses a significant risk. , 2022, Environment international.

[6]  Vishvanath Tiwari,et al.  Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. , 2022, International journal of biological macromolecules.

[7]  Zhuang Liu,et al.  Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery , 2022, Nature Communications.

[8]  Wei Wang,et al.  Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection , 2022, Microbiome.

[9]  C. Zheng,et al.  Tirapazamine-loaded CalliSpheres microspheres enhance synergy between tirapazamine and embolization against liver cancer in an animal model. , 2022, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[10]  S. Sandler,et al.  Positive Charges Are Important for the SOS Constitutive Phenotype in recA730 and recA1202 Mutants of Escherichia coli K-12 , 2022, Journal of bacteriology.

[11]  Steven J. Karpowicz Kinetics of taurine biosynthesis metabolites with reactive oxygen species: Implications for antioxidant-based production of taurine. , 2022, Biochimica et biophysica acta. General subjects.

[12]  Alan D. Lopez,et al.  Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis , 2022, The Lancet.

[13]  Kanika Jain,et al.  The rarA gene as part of an expanded RecFOR recombination pathway: Negative epistasis and synthetic lethality with ruvB, recG, and recQ , 2021, PLoS genetics.

[14]  Guoyao Wu,et al.  Important roles of amino acids in immune responses , 2021, British Journal of Nutrition.

[15]  T. R. Licht,et al.  Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut , 2021, Nature Microbiology.

[16]  C. Biondo Bacterial Antibiotic Resistance: The Most Critical Pathogens , 2023, Pathogens.

[17]  Changhan Lee,et al.  Stress-Responsive Periplasmic Chaperones in Bacteria , 2021, Frontiers in Molecular Biosciences.

[18]  Michael Schramm,et al.  Functions of ROS in Macrophages and Antimicrobial Immunity , 2021, Antioxidants.

[19]  M. V. D. van den Brink,et al.  Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites , 2020, Science.

[20]  H. Goossens,et al.  A one health framework to estimate the cost of antimicrobial resistance , 2020, Antimicrobial resistance and infection control.

[21]  D. Mengin-Lecreulx,et al.  CbrA Mediates Colicin M Resistance in Escherichia coli through Modification of Undecaprenyl-Phosphate-Linked Peptidoglycan Precursors , 2020, Journal of Bacteriology.

[22]  P. Bevilacqua,et al.  CsrA-Mediated Translational Activation of ymdA Expression in Escherichia coli , 2020, mBio.

[23]  Z. Podlesek,et al.  The DNA Damage Inducible SOS Response Is a Key Player in the Generation of Bacterial Persister Cells and Population Wide Tolerance , 2020, Frontiers in Microbiology.

[24]  K. Krikštopaitis,et al.  Preliminary Investigation of the Antibacterial Activity of Antitumor Drug 3-Amino-1,2,4-Benzotriazine-1,4-Dioxide (Tirapazamine) and its Derivatives , 2020, Applied Sciences.

[25]  E. Elinav,et al.  Interaction between microbiota and immunity in health and disease , 2020, Cell Research.

[26]  T. Śliwiński,et al.  Production of recombinant colicin M in Nicotiana tabacum plants and its antimicrobial activity , 2019, Plant Biotechnology Reports.

[27]  A. Nemeikaitė-Čėnienė,et al.  Kinetics of Flavoenzyme-Catalyzed Reduction of Tirapazamine Derivatives: Implications for Their Prooxidant Cytotoxicity , 2019, International journal of molecular sciences.

[28]  V. Shingler,et al.  Hfq-assisted RsmA regulation is central to Pseudomonas aeruginosa biofilm and motility , 2018, bioRxiv.

[29]  S. Albers,et al.  Archaeal biofilm formation , 2018, Nature Reviews Microbiology.

[30]  Dacheng Wang,et al.  A potential substrate binding pocket of BdcA plays a critical role in NADPH recognition and biofilm dispersal. , 2018, Biochemical and biophysical research communications.

[31]  H. Milnerowicz,et al.  Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. , 2018, Environmental toxicology and pharmacology.

[32]  Yulong Yin,et al.  Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism , 2018, Front. Cell. Infect. Microbiol..

[33]  H. Hur,et al.  Environmental Escherichia coli: ecology and public health implications—a review , 2017, Journal of applied microbiology.

[34]  G. Donelli,et al.  Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action , 2017, Virulence.

[35]  Guyue Cheng,et al.  Systematic and Molecular Basis of the Antibacterial Action of Quinoxaline 1,4-Di-N-Oxides against Escherichia coli , 2015, PloS one.

[36]  Teresa M. Coque,et al.  What is a resistance gene? Ranking risk in resistomes , 2014, Nature Reviews Microbiology.

[37]  K. Xavier,et al.  LsrF, a coenzyme A-dependent thiolase, catalyzes the terminal step in processing the quorum sensing signal autoinducer-2 , 2014, Proceedings of the National Academy of Sciences.

[38]  J. Ghigo,et al.  A new biofilm-associated colicin with increased efficiency against biofilm bacteria , 2014, The ISME Journal.

[39]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[40]  B. Turcotte,et al.  The anticancer drug tirapazamine has antimicrobial activity against Escherichia coli, Staphylococcus aureus and Clostridium difficile. , 2013, FEMS microbiology letters.

[41]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[42]  F. Burdan,et al.  Tirapazamine-Doxorubicin Interaction Referring to Heart Oxidative Stress and Ca2+ Balance Protein Levels , 2012, Oxidative medicine and cellular longevity.

[43]  G. Nava,et al.  Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner , 2011, Gut.

[44]  Paulo C. Covarrubias,et al.  The Escherichia coli BtuE Protein Functions as a Resistance Determinant against Reactive Oxygen Species , 2011, PloS one.

[45]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[46]  W. Shi,et al.  Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. , 2010, FEMS microbiology letters.

[47]  Jueheng Wu,et al.  SZ‐685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway , 2010, British journal of pharmacology.

[48]  A. Stadnyk,et al.  Role of TNF receptors, TNFR1 and TNFR2, in dextran sodium sulfate‐induced colitis , 2009, Inflammatory bowel diseases.

[49]  D. S. St. Clair,et al.  Regulation of superoxide dismutase genes: implications in disease. , 2009, Free radical biology & medicine.

[50]  H. Milnerowicz,et al.  Change of Zinc, Copper, and Metallothionein Concentrations and the Copper-Zinc Superoxide Dismutase Activity in Patients With Pancreatitis , 2009, Pancreas.

[51]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[52]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[53]  C. Janion Inducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli , 2008, International journal of biological sciences.

[54]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[55]  K. Peters,et al.  Tirapazamine: a hypoxia-activated topoisomerase II poison. , 2002, Cancer research.

[56]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[57]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.

[58]  Y. Pommier,et al.  Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. , 2008, Cancer research.

[59]  I. Olver,et al.  Tirapazamine: from bench to clinical trials. , 2006, Current clinical pharmacology.