Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions

We present a novel and efficient method for solving the Poisson equation, the heat equation, and Stefan-type problems with Robin boundary conditions over potentially moving, arbitrarily-shaped domains. The method utilizes a level set framework, thus it has all of the benefits of a sharp, implicitly-represented interface such as the ease of handling complex topological changes. This method is straightforward to implement and leads to a linear system that is symmetric and positive definite, which can be inverted efficiently with standard iterative methods. This approach is second-order accurate for both the Poisson and heat equations, and first-order accurate for the Stefan problem. We demonstrate the accuracy in the L^1 and L^~ norms.

[1]  F. Frank Radially symmetric phase growth controlled by diffusion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  W. Shyy,et al.  Computation of Solid-Liquid Phase Fronts in the Sharp Interface Limit on Fixed Grids , 1999 .

[3]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[4]  Li-Tien Cheng,et al.  A second-order-accurate symmetric discretization of the Poisson equation on irregular domains , 2002 .

[5]  Frédéric Gibou,et al.  Geometric integration over irregular domains with application to level-set methods , 2007, J. Comput. Phys..

[6]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .

[7]  T. Aslam A partial differential equation approach to multidimensional extrapolation , 2004 .

[8]  G Grinstein,et al.  Directions in condensed matter physics : memorial volume in honor of Shang-keng Ma , 1986 .

[9]  R. Fedkiw,et al.  The Ghost Fluid Method for de agration and detonation discontinuities , 1998 .

[10]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[11]  R. Caflisch,et al.  Level-set method for island dynamics in epitaxial growth , 2002 .

[12]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[13]  S. Osher,et al.  Island dynamics and the level set method for epitaxial growth , 1999 .

[14]  Ronald Fedkiw,et al.  Regular Article: The Ghost Fluid Method for Deflagration and Detonation Discontinuities , 1999 .

[15]  A. Schmidt Computation of Three Dimensional Dendrites with Finite Elements , 1996 .

[16]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[17]  R. Schwoebel Step motion on crystal surfaces , 1968 .

[18]  Britta Nestler,et al.  Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results , 2005 .

[19]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[20]  Frédéric Gibou,et al.  Rate equations and capture numbers with implicit islands correlations , 2001 .

[21]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[22]  Frédéric Gibou,et al.  An efficient fluid-solid coupling algorithm for single-phase flows , 2009, J. Comput. Phys..

[23]  F. Hudda,et al.  Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .

[24]  R. Fedkiw,et al.  A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem , 2005 .

[25]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[26]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[27]  Frédéric Gibou,et al.  Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions , 2008, J. Comput. Phys..

[28]  D. I. Meiron,et al.  Numerical simulations of unsteady crystal growth , 1992 .

[29]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[30]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Frédéric Gibou,et al.  Capture numbers in rate equations and scaling laws for epitaxial growth , 2003 .

[33]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[34]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[35]  R. Fedkiw,et al.  A boundary condition capturing method for incompressible flame discontinuities , 2001 .

[36]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[37]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[38]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .