A Brillouin scattering study of hydrous basaltic glasses: the effect of H2O on their elastic behavior and implications for the densities of basaltic melts

[1]  Lei Wu,et al.  Pressure-induced elastic and structural changes in hydrous basalt glasses: The effect of H2O on the gravitational stability of basalt melts at the base of the upper mantle , 2014 .

[2]  R. Seifert,et al.  The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions , 2014 .

[3]  R. Seifert,et al.  Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers , 2014 .

[4]  R. Seifert,et al.  Density of phonolitic magmas and time scales of crystal fractionation in magma chambers , 2013 .

[5]  A. Hushur,et al.  Compressibility and structural stability of two variably hydrated olivine samples. (FO97Fa3) to 34 GPa by X-ray diffraction and Raman spectroscopy , 2013 .

[6]  D. Dingwell,et al.  A high-temperature Brillouin scattering study on four compositions of haplogranitic glasses and melts: High-frequency elastic behavior through the glass transition , 2013 .

[7]  Bin Lv,et al.  Geochemistry of ̃2.7Ga basalts from Taishan area: Constraints on the evolution of early Neoarchean granite-greenstone belt in western Shandong Province, China , 2013 .

[8]  Yue-heng Yang,et al.  Destruction of the North China Craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths , 2013 .

[9]  Guochun Zhao,et al.  Precambrian geology of China: Preface , 2012 .

[10]  Dunyi Liu,et al.  Redefinition of depositional ages of Neoarchean supracrustal rocks in western Shandong Province, China: SHRIMP U–Pb zircon dating , 2012 .

[11]  Wenliang Xu,et al.  Spatial extent of the influence of the deeply subducted South China Block on the southeastern North China Block: Constraints from Sr–Nd–Pb isotopes in Mesozoic mafic igneous rocks , 2012 .

[12]  A. Polian,et al.  Water and the compressibility of silicate glasses: A Brillouin spectroscopic study , 2012 .

[13]  G. Cody,et al.  Effect of Network Polymerization on the Pressure-Induced Structural Changes in Sodium Aluminosilicate Glasses and Melts: 27Al and 17O Solid-State NMR Study , 2012 .

[14]  P. Lerch,et al.  Compositional dependent compressibility of dissolved water in silicate glasses , 2011 .

[15]  Guochun Zhao,et al.  U–Pb and Hf isotopic study of zircons of the Helanshan Complex: Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton , 2011 .

[16]  Yan-Tao Hao,et al.  Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton , 2010 .

[17]  X. Xia Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954-2005 , 2010 .

[18]  Shan Gao,et al.  Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg# diorites from the Central Orogenic Block of the North China Craton: The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning , 2010 .

[19]  W. Malfait,et al.  The nature of hydroxyl groups in aluminosilicate glasses: Quantifying Si-OH and Al-OH abundances along the SiO2-NaAlSiO4 join by 1H, 27Al-1H and 29Si-1H NMR spectroscopy , 2010 .

[20]  E. Ohtani,et al.  Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method , 2009 .

[21]  R. Walker,et al.  Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton , 2008 .

[22]  Wei Yang,et al.  Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton , 2008 .

[23]  San-zhong Li,et al.  SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen , 2008 .

[24]  T. Yoshino,et al.  Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite , 2008, Nature.

[25]  Wei Wang,et al.  Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton , 2008 .

[26]  M. Hirschmann Water, Melting, and the Deep Earth H 2 O Cycle , 2006 .

[27]  E. Ohtani,et al.  Stability of hydrous melt at the base of the Earth's upper mantle , 2006, Nature.

[28]  S. Karato,et al.  Density of hydrous silicate melt at the conditions of Earth's deep upper mantle , 2005, Nature.

[29]  M. Manghnani,et al.  In situ Brillouin spectroscopy of a pressure-induced apparent second-order transition in a silicate glass. , 2005, Physical review letters.

[30]  M. Zhai,et al.  Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review , 2005 .

[31]  Qiang Wang,et al.  Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong , 2004 .

[32]  Lin Jing-qian Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle , 2004 .

[33]  Hong‐fu Zhang,et al.  Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China Craton: A case study in Fuxin, Liaoning Province , 2003 .

[34]  D. Bercovici,et al.  Whole-mantle convection and the transition-zone water filter , 2002, Nature.

[35]  Wu Fu-yuan,et al.  DISCUSSIONS ON THE LITHOSPHERIC THINNING IN EASTERN CHINA , 2003 .

[36]  K. Litasov,et al.  Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa , 2002 .

[37]  J. Luhr,et al.  Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge , 2002 .

[38]  R. Carlson,et al.  Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton , 2002 .

[39]  Peter A. Cawood,et al.  SHRIMP U-Pb zircon ages of the Fuping Complex: implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton , 2002 .

[40]  W. Dong NATURE OF LATE MESOZOIC LITHOSPHERIC MANTLE IN WESTERN LIAONING PROVINCE:EVIDENCES FROM BASALT AND THE MANTLE-DERIVED XENOLITHS , 2002 .

[41]  E. Ohtani,et al.  Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle , 2001 .

[42]  A. Whittington,et al.  Partial molar volume of water in phonolitic glasses and liquids , 2001 .

[43]  F. Holtz,et al.  Compositional dependence of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses , 2001 .

[44]  Yigang Xu,et al.  Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: evidence, timing and mechanism , 2001 .

[45]  A. Whittington,et al.  Water and the density of silicate glasses , 2000 .

[46]  Youxue Zhang,et al.  The speciation of dissolved water in rhyolitic melt , 1999 .

[47]  R. Lange,et al.  The Density of Hydrous Magmatic Liquids. , 1999, Science.

[48]  S. Karato,et al.  Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle , 1998 .

[49]  C. Agee CRYSTAL-LIQUID DENSITY INVERSIONS IN TERRESTRIAL AND LUNAR MAGMAS , 1998 .

[50]  E. Ohtani,et al.  Density and thermal expansion of a peridotite melt at high pressure , 1998 .

[51]  R. Lange,et al.  The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model , 1997 .

[52]  Holloway,et al.  Melting Temperature and Partial Melt Chemistry of H2O-Saturated Mantle Peridotite to 11 Gigapascals , 1997, Science.

[53]  E. Garnero,et al.  Seismic Evidence for Partial Melt at the Base of Earth's Mantle , 1996, Science.

[54]  S. Karato Effects of Water on Seismic Wave Velocities in the Upper Mantle , 1995 .

[55]  S. Sipkin,et al.  Seismic evidence for silicate melt atop the 410-km mantle discontinuity , 1994, Nature.

[56]  Xie Hongsen,et al.  A New Method of Measurement for Elastic Wave Velocities in Minerals and Rocks at High Temperature and High Pressure and Its Significance , 1993 .

[57]  M. Menzies,et al.  Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China , 1993, Geological Society, London, Special Publications.

[58]  A. Nutman,et al.  Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton , 1992 .

[59]  Youxue Zhang,et al.  Water diffusion in a basaltic melt , 1991, Nature.

[60]  R. Boehler,et al.  Thermal expansion measurements at very high pressure, systematics, and a case for a chemically homog , 1989 .

[61]  B. Hillebrands,et al.  Construction and performance of a Brillouin scattering set-up using a triple-pass tandem Fabry-Perot interferometer , 1987 .

[62]  A. F. Guillermet,et al.  The pressure dependence of the expansivity and of the Anderson-Grüneisen parameter in the Murnaghan approximation , 1986 .

[63]  Edward M. Stolper,et al.  Water in silicate glasses: An infrared spectroscopic study , 1982 .

[64]  J. Moldowan,et al.  Paleoreconstruction by Biological Markers , 1981 .

[65]  Charles H. Whitfield,et al.  Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell , 1976 .

[66]  G. Tammann,et al.  Die Zunahme der Dichte von Gläsern nach Erstarrung unter erhöhtem Druck und die Wiederkehr der natürlichen Dichte durch Temperatursteigerung , 1929 .