Electrochemical determination of tryptophan at room-temperature ionic liquid-titanium carbide nanoparticle gel modified electrode

The novel gel composite, based on the ground of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, BMIMPF6) and titanium carbide (TiC) nanoparticles, was used to modify glassy carbon electrode and applied to the electrochemical determination of tryptophan (trp). The physical and electrochemical characterizations of the BMIMPF6-TiC gel modified electrode were studied in detail by scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry, and differential pulse voltammetry methods. Due to the large specific surface area and strong adsorption property of TiC nanoparticles, as well as the good ionic conductivity and strong electrocatalytic property of BMIMPF6, the oxidation peak current of trp at BMIMPF6-TiC gel modified electrode showed good linear relation with its concentrations ranging from 0.50 to 30 μmol/L and 30 to 500 μmol/L, respectively. The detection limit was 0.053 μmol/L. More importantly, the BMIMPF6-TiC gel modified electrode had good anti-interference ability and can be successfully applied in the electrochemical determination of trp in real food samples.

[1]  Zhao Feng,et al.  Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin , 2002 .

[2]  M. Alaiz,et al.  Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection , 2004 .

[3]  Vinod K. Gupta,et al.  Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. , 2003, Talanta.

[4]  S. Agarwal,et al.  Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix , 2006 .

[5]  Xiaoli Zhang,et al.  Simultaneous Voltammetry Determination of Dihydroxybenzene Isomers by Nanogold Modified Electrode , 2009 .

[6]  L. Singh,et al.  A novel copper (II) selective sensor based on Dimethyl 4, 4′ (o-phenylene) bis(3-thioallophanate) in PVC matrix , 2012 .

[7]  Shaojun Guo,et al.  Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan , 2010 .

[8]  A. Afkhami,et al.  Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. , 2014, Materials science & engineering. C, Materials for biological applications.

[9]  Haoqing Hou,et al.  Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. , 2010, Talanta.

[10]  Ke-Jing Huang,et al.  Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode. , 2009, Colloids and surfaces. B, Biointerfaces.

[11]  H. Karimi-Maleh,et al.  Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa , 2013, Ionics.

[12]  R. Goyal,et al.  Electrochemical Sensor for the Determination of Dopamine in Presence of High Concentration of Ascorbic Acid Using a Fullerene‐C60 Coated Gold Electrode , 2008 .

[13]  F. Karimi,et al.  Application of CdO nanoparticle ionic liquid modified carbon paste electrode as a high sensitive biosensor for square wave voltammetric determination of NADH. , 2014, Materials science & engineering. C, Materials for biological applications.

[14]  Leila Fotouhi,et al.  Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan , 2007 .

[15]  R. Goyal,et al.  Fullerene-C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolone--an anabolic steroid used in doping. , 2007, Analytica chimica acta.

[16]  Mohammad A. Khalilzadeh,et al.  A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. , 2014, Food chemistry.

[17]  Hassan Karimi-Maleh,et al.  High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. , 2013, Food chemistry.

[18]  Ying Liu,et al.  Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. , 2004, Analytical chemistry.

[19]  Hassan Karimi-Maleh,et al.  Carbon Paste Electrode Incorporating 1‐[4‐(Ferrocenyl Ethynyl) Phenyl]‐1‐Ethanone for Electrocatalytic and Voltammetric Determination of Tryptophan , 2008 .

[20]  Shilpi Agarwal,et al.  Voltammetric techniques for the assay of pharmaceuticals--a review. , 2011, Analytical biochemistry.

[21]  D. Chung,et al.  Capillary electrophoresis of nonprotein and protein amino acids without derivatization , 2000, Electrophoresis.

[22]  M. Shamsipur,et al.  Multiwall carbon nanotube-ionic liquid electrode modified with gold nanoparticles as a base for preparation of a novel impedimetric immunosensor for low level detection of human serum albumin in biological fluids. , 2014, Journal of pharmaceutical and biomedical analysis.

[23]  Pankaj Kumar,et al.  Determination of Uranyl Ions Using Poly(vinyl chloride) Based 4-tert-Butylcalix[6]arene Membrane Sensor , 1999 .

[24]  Pankaj Kumar,et al.  PVC-based membranes of N,N' -dibenzyl -1,4,10,13 -tetraoxa -7,16 -diazacyclooctadecane as Pb(II)-selective sensor , 2006 .

[25]  I. Molnár-Perl,et al.  New aspects of the simultaneous analysis of amino acids and amines as their o-phthaldialdehyde derivatives by high-performance liquid chromatography. Analysis of wine, beer and vinegar. , 2003, Journal of chromatography. A.

[26]  M. Zendehdel,et al.  Simultaneous determination of tryptophan, uric acid and ascorbic acid at iron(III) doped zeolite modified carbon paste electrode. , 2008, Colloids and surfaces. B, Biointerfaces.

[27]  I. Khmelinskii,et al.  Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods. , 2008, Analytica chimica acta.

[28]  Shilpi Agarwal,et al.  Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes , 2011, Critical reviews in analytical chemistry.

[29]  F. Farjami,et al.  Adsorptive Stripping Voltammetric Determination of Imipramine and Amitriptiline at a Nanoclay Composite Carbon Ionic Liquid Electrode , 2014 .

[30]  M. Trucksess Separation and isolation of trace impurities in L-tryptophan by high-performance liquid chromatography. , 1993, Journal of chromatography.

[31]  S. Sakura Chemiluminescence of tryptophan enhanced by electrochemical energy , 1992 .

[32]  S. Forbes,et al.  A capillary electrophoresis method for the determination of selected biogenic amines and amino acids in mammalian decomposition fluid. , 2010, Talanta.

[33]  Jin‐Ming Lin,et al.  Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(II)–amino acid complexes and its application to the determination of tryptophan and phenylalanine , 2000 .

[34]  Mohammad A. Khalilzadeh,et al.  Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples , 2013, Food Analytical Methods.

[35]  R. Goyal,et al.  Electrochemical oxidation of 2′,3′-dideoxyadenosine at pyrolytic graphite electrode , 2008 .

[36]  J. Bergquist,et al.  High throughput analysis of tryptophan metabolites in a complex matrix using capillary electrophoresis coupled to time-of-flight mass spectrometry. , 2007, Journal of chromatography. A.

[37]  Yaping Ding,et al.  Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. , 2011, Bioelectrochemistry.

[38]  Guangfeng Wang,et al.  Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate. , 2007, Talanta.

[39]  Rajendra N. Goyal,et al.  Simultaneous determination of adenosine and inosine using single-wall carbon nanotubes modified pyrolytic graphite electrode. , 2008, Talanta.

[40]  V. Gupta,et al.  Dicyclohexano-18-Crown-6 as Active Material in PVC Matrix Membrane for the Fabrication of Cadmium Selective Potentiometric Sensor (Proceedings of The 5Th East Asian Conference on Chemical Sensors: The 33RD Chemical Sensor Symposium) , 2001 .

[41]  R. Truscott,et al.  Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. , 2008, Free radical biology & medicine.

[42]  Suresh S. Jain,et al.  A PVC-based pentathia-15-crown-5 membrane potentiometric sensor for mercury(II) , 1997 .

[43]  Ajay K. Jain,et al.  Macrocycle Based Membrane Sensors for the Determination of Cobalt(II) Ions , 1997 .

[44]  S. Chandra,et al.  A highly selective mercury electrode based on a diamine donor ligand. , 2005, Talanta.

[45]  Mohammad A. Khalilzadeh,et al.  A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples , 2014 .

[46]  S. G. Roscoe,et al.  Electrochemical oxidation reactions of tyrosine, tryptophan and related dipeptides , 1997 .

[47]  Alfredo Sánchez,et al.  Development of screen-printed carbon electrodes modified with functionalized mesoporous silica nanoparticles: Application to voltammetric stripping determination of Pb(II) in non-pretreated natural waters , 2010 .

[48]  G. Jin,et al.  Preparation of Novel Arrays Silver Nanoparticles Modified Polyrutin Coat‐Paraffin‐Impregnated Graphite Electrode for Tyrosine and Tryptophan's Oxidation , 2008 .

[49]  Ashutosh Kumar Singh,et al.  Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). , 2007, Analytica chimica acta.

[50]  Xiao-ru Wang,et al.  Chemiluminescence of tryptophan and histidine in Ru(bpy)3(2+)-KMnO4 aqueous solution. , 2008, Talanta.

[51]  Yang Tian,et al.  Simultaneous and Direct Determination of Tryptophan and Tyrosine at Boron‐Doped Diamond Electrode , 2006 .

[52]  B. Singhal,et al.  Recent advances on potentiometric membrane sensors for pharmaceutical analysis. , 2011, Combinatorial chemistry & high throughput screening.

[53]  J. Raoof,et al.  Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode , 2009 .

[54]  Xiujun Li,et al.  Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle--Au/Hg dual electrode. , 2003, Analytical chemistry.

[55]  Suresh S. Jain,et al.  Chemical sensor for lanthanum(III) determination using aza-crown as ionophore in poly(vinyl chloride) matrix , 2003 .

[56]  M. Baghayeri,et al.  A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples , 2013, Ionics.

[57]  R. Prasad,et al.  Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination , 2004 .

[58]  A. Safavi,et al.  Simultaneous electrochemical determination of l-cysteine and l-cysteine disulfide at carbon ionic liquid electrode , 2014, Amino Acids.

[59]  É. Pollet,et al.  Role of tryptophan oxidation in peroxynitrite-dependent protein chemiluminescence. , 1998, Archives of biochemistry and biophysics.

[60]  Mohammad A. Khalilzadeh,et al.  Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode , 2012 .

[61]  P. S. Francis,et al.  Selective determination of amino acids using flow injection analysis coupled with chemiluminescence detection , 2003 .

[62]  Ajay K. Jain,et al.  A comparative study of Pb2+ selective sensors based on derivatized tetrapyrazole and calix[4]arene receptors , 2006 .

[63]  Xiangqin Lin,et al.  The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine , 2004 .

[64]  K. Altria,et al.  Quantitative determination of tryptophan enantiomers by capillary electrophoresis. , 1996, Journal of chromatography. B, Biomedical applications.

[65]  J. Limson,et al.  Reprint of “pH tuning of Nafion® for selective detection of tryptophan”☆ , 2010 .

[66]  A. Safavi,et al.  Electrocatalytic Oxidation of Tryptophan at Gold Nanoparticle-Modified Carbon Ionic Liquid Electrode , 2010 .

[67]  Y. Liu,et al.  Simultaneous Determination of Dihydroxybenzene Isomers at MWCNTs/β‐Cyclodextrin Modified Carbon Ionic Liquid Electrode in the Presence of Cetylpyridinium Bromide , 2010 .

[68]  Chunya Li,et al.  Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. , 2010, Colloids and surfaces. B, Biointerfaces.

[69]  Vinod K. Gupta,et al.  A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH) , 2014 .

[70]  S. Srivastava,et al.  PVC-Based 2,2,2-Cryptand Sensor for Zinc Ions. , 1996, Analytical chemistry.

[71]  R. Sharma,et al.  Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor , 2013 .

[72]  Ashutosh Kumar Singh,et al.  A cobalt(II)-selective PVC membrane based on a Schiff base complex of N,N′-bis(salicylidene)-3,4-diaminotoluene , 2006 .

[73]  Yukui Zhang,et al.  Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry. , 2003, Analytical biochemistry.

[74]  A. Ensafi,et al.  A voltammetric sensor based on NiO/CNTs ionic liquid carbon paste electrode for determination of morphine in the presence of diclofenac. , 2014, Materials science & engineering. C, Materials for biological applications.

[75]  Xiaoli Zhang,et al.  Electrochemical detection of chloride at the multilayer nano-silver modified indium-tin oxide thin electrodes , 2012 .

[76]  H. Karimi-Maleh,et al.  Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode , 2012 .

[77]  Heinrich Lang,et al.  Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix , 2006 .

[78]  Zhousheng Yang,et al.  A sensitive sensor for determination of l-tryptophan based on gold nanoparticles/poly(alizarin red S)-modified glassy carbon electrode , 2013, Journal of Solid State Electrochemistry.

[79]  Jianbin Zheng,et al.  Synthesis and electrochemical properties of PANI–TiC nanocomposite and its electrocatalytic behavior , 2013 .

[80]  He Li,et al.  Ionic liquid functionalized graphene based immunosensor for sensitive detection of carbohydrate antigen 15-3 integrated with Cd(2+)-functionalized nanoporous TiO2 as labels. , 2014, Biosensors & bioelectronics.

[81]  Pankaj Kumar,et al.  New nickel(II) selective potentiometric sensor based on 5,7,12,14-tetramethyldibenzotetraazaannulene in a poly(vinyl chloride) matrix , 2000 .

[82]  R. Poźniak,et al.  New Ionic Liquids and Their Antielectrostatic Properties , 2001 .