MeSsAGe risk score: tool for renal biopsy decision in steroid-dependent nephrotic syndrome

[1]  A. Anarat,et al.  Association of Serum Soluble Urokinase Receptor Levels With Progression of Kidney Disease in Children , 2017, JAMA pediatrics.

[2]  O. Rotzschke,et al.  Analysis of T Cell Subsets in Adult Primary/Idiopathic Minimal Change Disease: A Pilot Study , 2017, International journal of nephrology.

[3]  A. Quyyumi,et al.  A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease , 2017, Nature Medicine.

[4]  C. Mammen,et al.  Indications for kidney biopsy in idiopathic childhood nephrotic syndrome , 2017, Pediatric Nephrology.

[5]  D. Scadden,et al.  Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease , 2016, Nature Medicine.

[6]  Y. Chan,et al.  T Lymphocyte Activation Markers as Predictors of Responsiveness to Rituximab among Patients with FSGS. , 2016, Clinical journal of the American Society of Nephrology : CJASN.

[7]  T. Slowinski,et al.  Recurrent Primary Focal Segmental Glomerulosclerosis Managed With Intensified Plasma Exchange and Concomitant Monitoring of Soluble Urokinase-Type Plasminogen Activator Receptor–Mediated Podocyte &bgr;3-integrin Activation , 2015, Transplantation.

[8]  A. Quyyumi,et al.  Soluble Urokinase Receptor and Chronic Kidney Disease. , 2015, The New England journal of medicine.

[9]  Q. Shu,et al.  Serum suPAR levels help differentiate steroid resistance from steroid-sensitive nephrotic syndrome in children , 2015, Pediatric Nephrology.

[10]  B. Meijers,et al.  Reassessing the Reassessment of suPAR in Glomerular Disease , 2015, Front. Med..

[11]  C. Zeng,et al.  Relationship between serum soluble urokinase plasminogen activator receptor level and steroid responsiveness in FSGS. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[12]  M. Sarwal,et al.  A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation , 2014, Science Translational Medicine.

[13]  M. Ploug,et al.  Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. , 2014, Journal of the American Society of Nephrology : JASN.

[14]  M. Nangaku,et al.  A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. , 2014, Kidney international.

[15]  A. Rule,et al.  Urine But Not Serum Soluble Urokinase Receptor (suPAR) May Identify Cases of Recurrent FSGS in Kidney Transplant Candidates , 2013, Transplantation.

[16]  H. Trachtman,et al.  Is there clinical value in measuring suPAR levels in FSGS? , 2013, Clinical journal of the American Society of Nephrology : CJASN.

[17]  Ming-hui Zhao,et al.  Plasma soluble urokinase receptor levels are increased but do not distinguish primary from secondary focal segmental glomerulosclerosis. , 2013, Kidney international.

[18]  M. Zeier,et al.  Management of severe recurrent focal segmental glomerulosclerosis through circulating soluble urokinase receptor modification. , 2013, American journal of therapeutics.

[19]  A. Anarat,et al.  Circulating suPAR in two cohorts of primary FSGS. , 2012, Journal of the American Society of Nephrology : JASN.

[20]  E. Salido,et al.  Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis , 2011, Nature Medicine.

[21]  J. Dötsch,et al.  Characterisation of renal immune cell infiltrates in children with nephrotic syndrome , 2010, Pediatric Nephrology.

[22]  G. Schwartz,et al.  Measurement and estimation of GFR in children and adolescents. , 2009, Clinical journal of the American Society of Nephrology : CJASN.

[23]  E. Pearce,et al.  Functional Plasticity in Memory T Helper Cell Responses1 , 2007, The Journal of Immunology.

[24]  R. Hogg,et al.  Focal segmental glomerulosclerosis – epidemiology aspects in children and adults , 2007, Pediatric Nephrology.

[25]  E. Bambirra,et al.  Predictive factors of chronic kidney disease in primary focal segmental glomerulosclerosis , 2006, Pediatric Nephrology.

[26]  C. Usal,et al.  Renal macrophage activation and Th2 polarization precedes the development of nephrotic syndrome in Buffalo/Mna rats. , 2005, Kidney international.

[27]  E. Lewis,et al.  Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. , 2004, Journal of the American Society of Nephrology : JASN.

[28]  P. Carmeliet,et al.  uPAR: a versatile signalling orchestrator , 2002, Nature Reviews Molecular Cell Biology.

[29]  N. Brünner,et al.  Soluble Urokinase Plasminogen Activator Receptor Measurements: Influence of Sample Handling , 2001, The International journal of biological markers.

[30]  A. Papagianni,et al.  Factors influencing the course and the response to treatment in primary focal segmental glomerulosclerosis. , 2000, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[31]  M. Zaniew,et al.  Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome , 2000, Pediatric Nephrology.

[32]  C. Baird The pilot study. , 2000, Orthopedic nursing.

[33]  K. Lynn,et al.  Predicting renal survival in primary focal glomerulosclerosis from the time of presentation. , 1999, Kidney international.

[34]  N. Brünner,et al.  Presence of urokinase-type plasminogen activator receptor in urine of cancer patients and its possible clinical relevance. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[35]  Y. Nishibori,et al.  The Increase of Memory T Cell Subsets in Children with Idiopathic Nephrotic Syndrome , 1998, Nephron.

[36]  M. Schwartz,et al.  Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. , 1995, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[37]  M. Cooley,et al.  CD8+ T-cell subsets defined by expression of CD45 isoforms differ in their capacity to produce IL-2, IFN-gamma and TNF-beta. , 1994, Immunology.

[38]  C. Usal,et al.  Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. , 2009, Journal of the American Society of Nephrology : JASN.

[39]  T. Strom,et al.  Activated intrarenal transcription of CTL-effectors and TGF-beta1 in children with focal segmental glomerulosclerosis. , 2002, Kidney international.

[40]  J. Velosa,et al.  Significance of proteinuria on the outcome of renal function in patients with focal segmental glomerulosclerosis. , 1983, Mayo Clinic proceedings.

[41]  Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. , 1978, Kidney international.

[42]  J. Coresh,et al.  A tripartite complex of suPAR, APOL1 risk variants and alpha(v)beta(3) integrin on podocytes mediates chronic kidney disease , 2022 .