Characteristics of the Quenching of 9-Aminoacridine Fluorescence by Liposomes Made from Plant Lipids

[1]  U. Yermiyahu,et al.  Binding and Electrostatic Attraction of Lanthanum (La3+) and Aluminum (Al3+) to Wheat Root Plasma Membranes , 1997, The Journal of Membrane Biology.

[2]  T. Kinraide Use of a Gouy-Chapman-Stern Model for Membrane-Surface Electrical Potential to Interpret Some Features of Mineral Rhizotoxicity , 1994, Plant physiology.

[3]  U. Yermiyahu,et al.  A model for cation adsorption to clays and membranes , 1994 .

[4]  I. Møller,et al.  Surface charge density estimation by 9-aminoacridine fluorescence titration: improvements and limitations , 1993, European Biophysics Journal.

[5]  A. Ivanov,et al.  A comparative analysis of the effects of in-vivo and in-vitro abscisic-acid treatment on the surface electrical properties of barley chloroplast membranes , 1992, Planta.

[6]  H. Matsumoto,et al.  Changes of some properties of the plasma membrane-enriched fraction of barley roots related to aluminum stress: membrane-associated ATPase, aluminum and calcium. , 1992 .

[7]  L. Kochian,et al.  Interactive effects of Al, h, and other cations on root elongation considered in terms of cell-surface electrical potential. , 1992, Plant physiology.

[8]  M. Shannon,et al.  Electrostatic Changes in Lycopersicon esculentum Root Plasma Membrane Resulting from Salt Stress. , 1990, Plant physiology.

[9]  S. Marčelja,et al.  Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. , 1990, Biophysical journal.

[10]  D. Brauer,et al.  Phospholipid requirement of the vanadate-sensitive ATPase from maize roots evaluated by two methods. , 1989, Plant physiology.

[11]  K. Oka,et al.  Surface charge density estimation of vigna mungo protoplasts using a fluorescent dye, 9-aminoacridine , 1988 .

[12]  S. Abe,et al.  Effects of la on surface charges, dielectrophoresis, and electrofusion of barley protoplasts. , 1988, Plant physiology.

[13]  M. Whitaker,et al.  Cations that alter surface potentials of lipid bilayers increase the calcium requirement for exocytosis in sea urchin eggs. , 1988, The Journal of physiology.

[14]  S. McLaughlin,et al.  An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. , 1986, Biochemistry.

[15]  T. Lundborg,et al.  Electrostatic surface properties of plasmalemma vesicles from oat and wheat roots. Ion binding and screening investigated by 9-aminoacridine fluorescence , 1985, Planta.

[16]  S. McLaughlin,et al.  Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes. , 1984, Biochemistry.

[17]  A. Theuvenet,et al.  Application of 9-aminoacridine as a probe of the surface potential experienced by cation transporters in the plasma membrane of yeast cells , 1984 .

[18]  R. Latorre,et al.  Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium. , 1983, Biophysical journal.

[19]  J. Barber,et al.  Salt-dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces. , 1980, Journal of biochemical and biophysical methods.

[20]  J. Barber,et al.  9-Aminoacridine fluorescence changes as a measure of surface charge density of the thylakoid membrane. , 1980, Biochimica et biophysica acta.

[21]  L. Wojtczak,et al.  Surface change of biological membranes as a possible regulator of membrane-bound enzymes. , 1979, European journal of biochemistry.

[22]  J. Barber,et al.  The involvement of the electrical double layer in the quenching of 9-aminoacridine fluorescence by negatively charged surfaces. , 1978, Biochimica et biophysica acta.

[23]  J. Barber,et al.  9-amino-acridine as a probe of the electrical double layer associated with the chloroplast thylakoid membranes. , 1977, Biochimica et biophysica acta.

[24]  S. McLaughlin,et al.  Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes , 2005, The Journal of Membrane Biology.

[25]  M. Rugolo,et al.  Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria. , 1991, Plant physiology.

[26]  A. Lewis-Russ Measurement of Surface Charge of Inorganic Geologic Materials: Techniques and Their Consequences , 1991 .

[27]  M. Senda,et al.  Electrophoresis, zeta potential and surface charges of barley mesophyll protoplasts , 1989 .

[28]  S. McLaughlin,et al.  The electrostatic properties of membranes. , 1989, Annual review of biophysics and biophysical chemistry.

[29]  A. Banin,et al.  Specific Adsorption of Lithium, Sodium, Potassium, and Strontium to Montmorillonite: Observations and Predictions1 , 1986 .

[30]  G. Ehrenstein,et al.  Membrane Surface Charge , 1984 .

[31]  J. Barber,et al.  9-Aminoacridine as a fluorescent probe of the electrical diffuse layer associated with the membranes of plant mitochondria. , 1981, The Biochemical journal.

[32]  Mahendra K. Jain Introduction to biological membranes , 1980 .