Cerebrospinal fluid pressure and glaucoma

Eyes with normal-pressure glaucoma and those with high-pressure glaucoma can show a similar optic nerve head appearance, while eyes with vascular optic neuropathies show a markedly different optic disc appearance. Factors in addition to intraocular pressure (IOP) may thus play a role in the pathogenesis of glaucomatous optic neuropathy. Clinical and experimental studies showed that (1) physiologic associations between cerebrospinal fluid (CSF) pressure, systemic arterial blood pressure, IOP and body mass index exist; (2) a low CSF pressure was associated with the development of glaucomatous optic nerve damage in cats; (3) patients with normal (intraocular) pressure glaucoma had significantly lower CSF pressure and a higher trans lamina cribrosa pressure difference when compared to normal subjects; and (4) patients with normal- pressure glaucoma as compared with patients with high-pressure glaucoma have a significantly narrower orbital CSF space. A shallow orbital CSF space has been shown to be associated with a low CSF pressure. Due to anatomic reasons, the orbital CSF pressure and the optic nerve tissue pressure (and not the atmospheric pressure) form the retro-laminar counter-pressure against the IOP and are thus part of the trans-lamina cribrosa pressure difference and gradient. Assuming that an elevated trans-lamina cribrosa pressure difference and a steeper trans-lamina cribrosa pressure gradient are important for glaucomatous optic nerve damage, a low orbital CSF pressure would therefore play a role in the pathogenesis of normal-(intraocular) pressure glaucoma. Due to the association between CSF pressure and blood pressure, a low blood pressure could be indirectly involved.

[1]  Philip P. Chen,et al.  Optic Disc Hemorrhages in Glaucoma , 2015, Current Ophthalmology Reports.

[2]  Robert N Weinreb,et al.  Optic neuropathy induced by experimentally reduced cerebrospinal fluid pressure in monkeys. , 2014, Investigative ophthalmology & visual science.

[3]  J. Jonas,et al.  Body Height, Estimated Cerebrospinal Fluid Pressure and Open-Angle Glaucoma. The Beijing Eye Study 2011 , 2014, PloS one.

[4]  J. Jonas,et al.  Trans-Lamina Cribrosa Pressure Difference and Open-Angle Glaucoma. The Central India Eye and Medical Study , 2013, PloS one.

[5]  R. Ritch,et al.  Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study , 2013, Critical Care.

[6]  G. Jaggi,et al.  Orbital cerebrospinal fluid space in glaucoma. , 2013, Ophthalmology.

[7]  S. Stinnett,et al.  Body mass index has a linear relationship with cerebrospinal fluid pressure. , 2012, Investigative ophthalmology & visual science.

[8]  J. Jonas,et al.  Cerebrospinal fluid pressure correlated with body mass index , 2012, Graefe's Archive for Clinical and Experimental Ophthalmology.

[9]  J. Jonas Role of cerebrospinal fluid pressure in the pathogenesis of glaucoma , 2011, Acta ophthalmologica.

[10]  R. Weinreb,et al.  Optic nerve sheath diameter in normal-tension glaucoma patients , 2011, British Journal of Ophthalmology.

[11]  J. Jonas,et al.  Cerebrospinal fluid pressure in ocular hypertension , 2011, Acta ophthalmologica.

[12]  J. Jonas,et al.  Cerebrospinal fluid pressure in glaucoma: a prospective study. , 2010, Ophthalmology.

[13]  Victoria P. A. Johnstone,et al.  Histomorphometric measurements in human and dog optic nerve and an estimation of optic nerve pressure gradients in human. , 2009, Experimental eye research.

[14]  Dao-Yi Yu,et al.  New observations concerning the nature of central retinal vein pulsation , 2009, British Journal of Ophthalmology.

[15]  N. Strouthidis,et al.  Comparison of clinical and three-dimensional histomorphometric optic disc margin anatomy. , 2009, Investigative ophthalmology & visual science.

[16]  J. Jonas,et al.  Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. , 2009, Investigative ophthalmology & visual science.

[17]  J. Downs,et al.  Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model. , 2009, Journal of biomechanical engineering.

[18]  Ian A Sigal,et al.  Biomechanics of the optic nerve head. , 2009, Experimental eye research.

[19]  M. Hazelton,et al.  The association between retinal vein ophthalmodynamometric force change and optic disc excavation , 2008, British Journal of Ophthalmology.

[20]  Sandra S Stinnett,et al.  Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. , 2008, Investigative ophthalmology & visual science.

[21]  Dao-Yi Yu,et al.  Impaired cerebrospinal fluid circulation and its relationship to glaucoma , 2008, Clinical & experimental ophthalmology.

[22]  William H Morgan,et al.  The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. , 2008, Journal of glaucoma.

[23]  J Crawford Downs,et al.  Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. , 2008, Journal of glaucoma.

[24]  R. Allingham,et al.  Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. , 2008, Ophthalmology.

[25]  J. Jonas,et al.  Intraocular pressure correlated with arterial blood pressure: the beijing eye study. , 2007, American journal of ophthalmology.

[26]  M. Hazelton,et al.  Value of retinal vein pulsation characteristics in predicting increased optic disc excavation , 2006, British Journal of Ophthalmology.

[27]  J. Jonas,et al.  High myopia and glaucoma susceptibility the Beijing Eye Study. , 2007, Ophthalmology.

[28]  C. R. Ethier,et al.  Factors influencing optic nerve head biomechanics. , 2005, Investigative ophthalmology & visual science.

[29]  P. Mitchell,et al.  Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. , 2005, American journal of ophthalmology.

[30]  J. Jonas,et al.  Optic Nerve Damage in Highly Myopic Eyes with Chronic Open-Angle Glaucoma , 2005, European journal of ophthalmology.

[31]  P. Graham Some factors in the production of low tension glaucoma , 2005 .

[32]  M. Hazelton,et al.  Retinal venous pulsation in glaucoma and glaucoma suspects. , 2004, Ophthalmology.

[33]  J. Jonas,et al.  Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. , 2004, Investigative ophthalmology & visual science.

[34]  J Flammer,et al.  Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation , 2004, British Journal of Ophthalmology.

[35]  J. Jonas,et al.  Optic disc morphology in myopic primary open-angle glaucoma , 1997, Graefe's Archive for Clinical and Experimental Ophthalmology.

[36]  J. Jonas,et al.  Optic disc morphology in juvenile primary open-angle glaucoma , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[37]  J. Jonas,et al.  Optic disc morphology in “age-related atrophic glaucoma” , 1996, Graefe's Archive for Clinical and Experimental Ophthalmology.

[38]  Jost B Jonas,et al.  Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. , 2003, Investigative ophthalmology & visual science.

[39]  M. C. Leske,et al.  Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. , 2003, Archives of ophthalmology.

[40]  M. Nicolela,et al.  Effects of cold-induced vasospasm in glaucoma: the role of endothelin-1. , 2003, Investigative ophthalmology & visual science.

[41]  A. Investigators The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. , 2002, American journal of ophthalmology.

[42]  J. Jonas,et al.  Anisometropia and degree of optic nerve damage in chronic open-angle glaucoma. , 2002, American journal of ophthalmology.

[43]  Dao-Yi Yu,et al.  Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. , 2002, Investigative ophthalmology & visual science.

[44]  J C Morrison,et al.  The anatomy and pathophysiology of the optic nerve head in glaucoma. , 2001, Journal of glaucoma.

[45]  J. Jonas,et al.  Optic disc morphology after arteritic anterior ischemic optic neuropathy. , 2001, Ophthalmology.

[46]  R. T. Hart,et al.  The optic nerve head as a biomechanical structure: initial finite element modeling. , 2000, Investigative ophthalmology & visual science.

[47]  J. Jonas,et al.  Optic nerve head appearance in juvenile-onset chronic high-pressure glaucoma and normal-pressure glaucoma. , 2000, Ophthalmology.

[48]  B. Prum,et al.  The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration , 2000 .

[49]  J. Jonas,et al.  Localised retinal nerve fibre layer defects in chronic experimental high pressure glaucoma in rhesus monkeys , 1999, The British journal of ophthalmology.

[50]  J. Jonas,et al.  Optic cup deepening spatially correlated with optic nerve damage in focal normal-pressure glaucoma. , 1999, Journal of glaucoma.

[51]  J. Jonas,et al.  Optic disk morphology in experimental central retinal artery occlusion in rhesus monkeys. , 1999, American journal of ophthalmology.

[52]  Douglas R. Anderson,et al.  Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. , 1998, American journal of ophthalmology.

[53]  D. Broadway,et al.  Glaucoma and vasospasm , 1998, The British journal of ophthalmology.

[54]  I. Constable,et al.  The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. , 1998, Investigative ophthalmology & visual science.

[55]  J. Jonas,et al.  Pressure-dependent neuroretinal rim loss in normal-pressure glaucoma. , 1998, American journal of ophthalmology.

[56]  I. Constable,et al.  Retinal artery and vein pressures in the dog and their relationship to aortic, intraocular, and cerebrospinal fluid pressures. , 1997, Microvascular research.

[57]  R L Cooper,et al.  The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. , 1995, Investigative ophthalmology & visual science.

[58]  M. Araie,et al.  Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. , 1994, Ophthalmology.

[59]  J. Jonas,et al.  Optic disk hemorrhages in glaucoma. , 1994, American journal of ophthalmology.

[60]  S. Hayreh,et al.  Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. , 1994, American journal of ophthalmology.

[61]  J. Jonas,et al.  Optic disc morphology in eyes after nonarteritic anterior ischemic optic neuropathy. , 1993, Investigative ophthalmology & visual science.

[62]  J. Jonas,et al.  Parapapillary atrophy and retinal vessel diameter in nonglaucomatous optic nerve damage. , 1991, Investigative ophthalmology & visual science.

[63]  J. Jonas,et al.  Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. , 1989, Investigative ophthalmology & visual science.

[64]  S. Drance,et al.  Disc hemorrhages in the glaucomas. , 1989, Survey of ophthalmology.

[65]  J. Jonas,et al.  Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. , 1988, Investigative ophthalmology & visual science.

[66]  Tetsuya Yamamoto,et al.  Optic disc hemorrhage in low-tension glaucoma. , 1986, Ophthalmology.

[67]  L. Frisén,et al.  Narrowing of the retinal arterioles in descending optic atrophy. A quantitative clinical study. , 1984, Ophthalmology.

[68]  S S Hayreh,et al.  Optic disc edema in raised intracranial pressure. V. Pathogenesis. , 1977, Archives of ophthalmology.

[69]  D. Minckler,et al.  A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. , 1976, American journal of ophthalmology.

[70]  H. Quigley,et al.  The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. , 1976, Investigative ophthalmology.

[71]  Volkov Vv Essential element of the glaucomatous process neglected in clinical practice , 1976 .

[72]  V. V. Volkov [Essential element of the glaucomatous process neglected in clinical practice]. , 1976, Oftalmologicheskii zhurnal.

[73]  A. Hendrickson,et al.  Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. , 1974, Investigative ophthalmology.