On the Commutative Equivalence of Context-Free Languages
暂无分享,去创建一个
[1] Antonio Restivo,et al. Minimal Complete Sets of Words , 1980, Theor. Comput. Sci..
[2] Peter W. Shor,et al. A Counterexample to the Triangle Conjecture , 1985, J. Comb. Theory A.
[3] Aldo de Luca. Some combinatorial results on Bernoulli sets and codes , 2002, Theor. Comput. Sci..
[4] Noam Chomsky,et al. The Algebraic Theory of Context-Free Languages* , 1963 .
[5] Dominique Perrin,et al. On the generating sequences of regular languages on k symbols , 2003, JACM.
[6] Antonio Restivo,et al. A characterization of bounded regular sets , 1975, Automata Theory and Formal Languages.
[7] Dominique Perrin,et al. Codes and Automata , 2009, Encyclopedia of mathematics and its applications.
[8] Philippe Flajolet,et al. Analytic Models and Ambiguity of Context-free Languages* , 2022 .
[9] P.R.J. Asveld. Review of "L. Ilie, G. Rozenberg & A. Salomaa, A characterization of poly-slender context-free languages. Theor. Inform. Appl. 34 (2000) 77-86" , 2000 .
[10] Benedetto Intrigila,et al. On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..
[11] Werner Kuich,et al. The Characterization of Nonexpansive Grammars by Rational Power Series , 1981, Inf. Control..
[12] Benedetto Intrigila,et al. Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..
[13] Filippo Mignosi,et al. On the Longest Common Factor Problem , 2008, IFIP TCS.
[14] Oscar H. Ibarra,et al. On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.
[15] Roberto Incitti,et al. The growth function of context-free languages , 2001, Theor. Comput. Sci..
[16] Benedetto Intrigila,et al. On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..
[17] Benedetto Intrigila,et al. The Parikh counting functions of sparse context-free languages are quasi-polynomials , 2009, Theor. Comput. Sci..
[18] Oscar H. Ibarra,et al. On bounded languages and reversal-bounded automata , 2016, Inf. Comput..
[19] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[20] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[21] Robert H. Gilman,et al. Context-Free Languages of Sub-exponential Growth , 2002, J. Comput. Syst. Sci..
[22] Michel Latteux,et al. On Bounded Context-free Languages , 1984, J. Inf. Process. Cybern..
[23] Benedetto Intrigila,et al. On the commutative equivalence of semi-linear sets of Nk , 2015, Theor. Comput. Sci..
[24] Lucian Ilie,et al. A characterization of poly-slender context-free languages , 2000, RAIRO Theor. Informatics Appl..