On the Commutative Equivalence of Context-Free Languages

The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated.

[1]  Antonio Restivo,et al.  Minimal Complete Sets of Words , 1980, Theor. Comput. Sci..

[2]  Peter W. Shor,et al.  A Counterexample to the Triangle Conjecture , 1985, J. Comb. Theory A.

[3]  Aldo de Luca Some combinatorial results on Bernoulli sets and codes , 2002, Theor. Comput. Sci..

[4]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[5]  Dominique Perrin,et al.  On the generating sequences of regular languages on k symbols , 2003, JACM.

[6]  Antonio Restivo,et al.  A characterization of bounded regular sets , 1975, Automata Theory and Formal Languages.

[7]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[8]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[9]  P.R.J. Asveld Review of "L. Ilie, G. Rozenberg & A. Salomaa, A characterization of poly-slender context-free languages. Theor. Inform. Appl. 34 (2000) 77-86" , 2000 .

[10]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..

[11]  Werner Kuich,et al.  The Characterization of Nonexpansive Grammars by Rational Power Series , 1981, Inf. Control..

[12]  Benedetto Intrigila,et al.  Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..

[13]  Filippo Mignosi,et al.  On the Longest Common Factor Problem , 2008, IFIP TCS.

[14]  Oscar H. Ibarra,et al.  On Sparseness, Ambiguity and other Decision Problems for Acceptors and Transducers , 1986, STACS.

[15]  Roberto Incitti,et al.  The growth function of context-free languages , 2001, Theor. Comput. Sci..

[16]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..

[17]  Benedetto Intrigila,et al.  The Parikh counting functions of sparse context-free languages are quasi-polynomials , 2009, Theor. Comput. Sci..

[18]  Oscar H. Ibarra,et al.  On bounded languages and reversal-bounded automata , 2016, Inf. Comput..

[19]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[20]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[21]  Robert H. Gilman,et al.  Context-Free Languages of Sub-exponential Growth , 2002, J. Comput. Syst. Sci..

[22]  Michel Latteux,et al.  On Bounded Context-free Languages , 1984, J. Inf. Process. Cybern..

[23]  Benedetto Intrigila,et al.  On the commutative equivalence of semi-linear sets of Nk , 2015, Theor. Comput. Sci..

[24]  Lucian Ilie,et al.  A characterization of poly-slender context-free languages , 2000, RAIRO Theor. Informatics Appl..