Three kinds of corneal host cells contribute differently to corneal neovascularization

[1]  C. Vangsness,et al.  Allografts , 2020, Noyes' Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes.

[2]  L. Gordon,et al.  Epithelial Membrane Protein-2 (EMP2) Antibody Blockade Reduces Corneal Neovascularization in an In Vivo Model , 2019, Investigative ophthalmology & visual science.

[3]  Gregory A. Schmidt,et al.  Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus , 2018, PloS one.

[4]  T. Hashimoto,et al.  Laminins in an in vitro anterior lens capsule model established using HLE B-3 cells , 2018, Molecular medicine reports.

[5]  Ping Liu,et al.  Blockade of MMP-2 and MMP-9 inhibits corneal lymphangiogenesis , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  S. Bhattacharya,et al.  Phospholipidomic Studies in Human Cornea From Climatic Droplet Keratopathy , 2017, Journal of cellular biochemistry.

[7]  D. Carr,et al.  Fibroblast growth factor-2 Drives and Maintains Progressive Corneal Neovascularization following HSV-1 Infection , 2017, Mucosal Immunology.

[8]  N. Sanders,et al.  In vitro exploration of a myeloid-derived suppressor cell line as vehicle for cancer gene therapy , 2016, Cancer Gene Therapy.

[9]  S. Peirce,et al.  Flt-1 (VEGFR-1) coordinates discrete stages of blood vessel formation. , 2016, Cardiovascular research.

[10]  D. Azar,et al.  Matrix metalloproteinase 14 modulates signal transduction and angiogenesis in the cornea. , 2016, Survey of ophthalmology.

[11]  P. Newman,et al.  Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31) , 2016, Current opinion in hematology.

[12]  N. Laver,et al.  Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3 , 2016, Nature Communications.

[13]  F. Zhang,et al.  Neuropilin-2 contributes to LPS-induced corneal inflammatory lymphangiogenesis. , 2016, Experimental eye research.

[14]  P. Hamrah,et al.  Comparison of Galectin Expression Signatures in Rejected and Accepted Murine Corneal Allografts , 2015, Cornea.

[15]  P. Zhou,et al.  Knockout of αA-crystallin inhibits ocular neovascularization. , 2015, Investigative ophthalmology & visual science.

[16]  He Wang,et al.  Keratocytes create stromal spaces to promote corneal neovascularization via MMP13 expression. , 2014, Investigative ophthalmology & visual science.

[17]  G. Rabinovich,et al.  Vascular galectins: regulators of tumor progression and targets for cancer therapy. , 2013, Cytokine & growth factor reviews.

[18]  K. Maruyama,et al.  Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases , 2013, Progress in Retinal and Eye Research.

[19]  M. Deng,et al.  Alpha-crystallins and tumorigenesis. , 2012, Current molecular medicine.

[20]  Shi-you Zhou,et al.  Minocycline Inhibits Alkali Burn-Induced Corneal Neovascularization in Mice , 2012, PloS one.

[21]  J. Enghild,et al.  Human Cornea Proteome: Identification and Quantitation of the Proteins of the Three Main Layers Including Epithelium, Stroma, and Endothelium , 2012, Journal of proteome research.

[22]  Wei Zhu,et al.  αA-crystallin in the pathogenesis and intervention of experimental murine corneal neovascularization. , 2012, Experimental eye research.

[23]  S. Bhat,et al.  Small Heat Shock Protein αA-Crystallin Prevents Photoreceptor Degeneration in Experimental Autoimmune Uveitis , 2012, PloS one.

[24]  Wei Zhu,et al.  Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization , 2011, Molecular vision.

[25]  N. Mukaida,et al.  Critical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization , 2011, Molecular vision.

[26]  Ping Liu,et al.  Blocking neuropilin-2 enhances corneal allograft survival by selectively inhibiting lymphangiogenesis on vascularized beds , 2010, Molecular vision.

[27]  T. Krunkosky,et al.  Immunohistochemical study of matrix metalloproteinases-2 and -9, macrophage inflammatory protein-2 and tissue inhibitors of matrix metalloproteinases-1 and -2 in normal, purulonecrotic and fungal infected equine corneas. , 2010, Veterinary ophthalmology.

[28]  N. Rezaei,et al.  Corneal neovascularization: molecular events and therapeutic options. , 2009, Recent patents on inflammation & allergy drug discovery.

[29]  W. Freeman,et al.  The Retinal Proteome in Experimental Diabetic Retinopathy , 2009, Molecular & Cellular Proteomics.

[30]  E. Brey,et al.  Endothelial cell-matrix interactions in neovascularization. , 2008, Tissue engineering. Part B, Reviews.

[31]  A. Rouvas,et al.  Inhibition of corneal neovascularization by subconjunctival bevacizumab in an animal model. , 2008, American journal of ophthalmology.

[32]  E. Wawrousek,et al.  Exacerbation of retinal degeneration in the absence of alpha crystallins in an in vivo model of chemically induced hypoxia. , 2008, Experimental eye research.

[33]  H. Zhai,et al.  [The roles of gelatinases in pathological changes of fungal keratitis in experimental rabbits]. , 2007, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology.

[34]  S. Saika,et al.  Endogenous TNFα Suppression of Neovascularization in Corneal Stroma in Mice , 2007 .

[35]  J. C. Pate,et al.  Expression of Matrix Metalloproteinases 2 and 9 in Experimental Corneal Injury and Fungal Keratitis , 2007, Cornea.

[36]  P. Lalitha,et al.  Matrix metalloproteinases (MMP-8, MMP-9) and the tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2) in patients with fungal keratitis. , 2007, Cornea.

[37]  Claus Cursiefen,et al.  Immune privilege and angiogenic privilege of the cornea. , 2007, Chemical immunology and allergy.

[38]  K. Flanders,et al.  Loss of Tumor Necrosis Factor α Potentiates Transforming Growth Factor β-mediated Pathogenic Tissue Response during Wound Healing , 2006 .

[39]  K. Maruyama,et al.  Time Course of Angiogenesis and Lymphangiogenesis After Brief Corneal Inflammation , 2006, Cornea.

[40]  S. Saika TGFβ pathobiology in the eye , 2006, Laboratory Investigation.

[41]  S. Seregard,et al.  Delayed inflammation-associated corneal neovascularization in MMP-2-deficient mice. , 2005, Experimental eye research.

[42]  C. Müller-Goymann,et al.  Human corneal equivalent as cell culture model for in vitro drug permeation studies , 2004, British Journal of Ophthalmology.

[43]  J. Enghild,et al.  Transforming growth factor beta induced protein accumulation in granular corneal dystrophy type III (Reis-Bücklers dystrophy). Identification by mass spectrometry in 15 year old two-dimensional protein gels. , 2003, Molecular vision.

[44]  B. Rouse,et al.  Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. , 2002, The Journal of clinical investigation.

[45]  Jan-Kan Chen,et al.  Expression of Matrix Metalloproteinases 2 and 9 and Tissue Inhibitors of Metalloproteinase 1 and 2 in Inflammation-Induced Corneal Neovascularization , 2001, Ophthalmic Research.

[46]  L. Hazlett,et al.  Evidence for TIMP-1 protection against P. aeruginosa-induced corneal ulceration and perforation. , 1999, Investigative ophthalmology & visual science.

[47]  J. K. Chen,et al.  Inhibition of vascular endothelial cell morphogenesis in cultures by limbal epithelial cells. , 1999, Investigative ophthalmology & visual science.

[48]  R. Nickells Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. , 1999, Survey of ophthalmology.

[49]  D. Mooney,et al.  Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. , 1999, The American journal of pathology.

[50]  D. Azar,et al.  Expression of gelatinases A and B, and TIMPs 1 and 2 during corneal wound healing. , 1998, Investigative ophthalmology & visual science.

[51]  K. Alitalo,et al.  Proinflammatory Cytokines Regulate Expression of the Lymphatic Endothelial Mitogen Vascular Endothelial Growth Factor-C* , 1998, The Journal of Biological Chemistry.

[52]  J. Robertson,et al.  Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. , 1994, Investigative ophthalmology & visual science.

[53]  S. Okisaka,et al.  Formation of capillary-like tubes by vascular endothelial cells cocultivated with keratocytes. , 1992, Investigative ophthalmology & visual science.

[54]  J. Roth,et al.  Immunohistochemical detection of bFGF and TNF-alpha in the course of inflammatory angiogenesis in the mouse cornea. , 1990, The American journal of pathology.

[55]  A. Cornell-Bell,et al.  Conjunctival basophil hypersensitivity in the guinea pig. , 1986, The Journal of allergy and clinical immunology.

[56]  W. Henderson,et al.  The biologic activity of mast cell granules. I. Elicitation of inflammatory responses in rat skin. , 1980, Journal of immunology.

[57]  J. Eliason Leukocytes and experimental corneal vascularization. , 1978, Investigative ophthalmology & visual science.

[58]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[59]  Z. Yin,et al.  Proteomic profiling of early degenerative retina of RCS rats. , 2017, International journal of ophthalmology.

[60]  D. Zawieja,et al.  Inflammation induces lymphangiogenesis through up-regulation of , 2012 .

[61]  D. Zawieja,et al.  Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF- (cid:1) B and Prox1 , 2010 .

[62]  D. Azar Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). , 2006, Transactions of the American Ophthalmological Society.

[63]  D. Azar,et al.  Corneal neovascularization. , 2001, Current opinion in ophthalmology.

[64]  C. Ballaun,et al.  Human keratinocytes express the three major splice forms of vascular endothelial growth factor. , 1995, The Journal of investigative dermatology.

[65]  M. Kaminski,et al.  Inhibition of lymphocyte-induced angiogenesis by enzymatically isolated rabbit cornea cells. , 1978, Archivum immunologiae et therapiae experimentalis.

[66]  C. Fromer,et al.  An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. , 1976, The American journal of pathology.