Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally, numerical experiments are reported.

[1]  Roland Glowinski,et al.  On a mixed finite element approximation of the Stokes problem (I) , 1979 .

[2]  Kazuo Ishihara,et al.  A Mixed Finite Element Method for the Biharmonic Eigenvalue Problems of Plate Bending , 1978 .

[3]  J. Osborn Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier–Stokes Equations , 1976 .

[4]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[7]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[8]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[9]  Christian Wieners Bounds for theN lowest eigenvalues of fourth-order boundary value problems , 2007, Computing.

[10]  Jun Zou,et al.  Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems , 2002, Numerische Mathematik.

[11]  P. Jimack,et al.  A numerical investigation of the solution of a class of fourth–order eigenvalue problems , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  M. Krízek Conforming finite element approximation of the Stokes problem , 1990 .

[13]  Rolf Rannacher,et al.  Nonconforming finite element methods for eigenvalue problems in linear plate theory , 1979 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[16]  J. Osborn Spectral approximation for compact operators , 1975 .

[17]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[18]  Philippe G. Ciarlet,et al.  A Mixed Finite Element Method for the Biharmonic Equation , 1974 .

[19]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[20]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[21]  Xiu Ye Superconvergence of nonconforming finite element method for the Stokes equations , 2002 .

[22]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[23]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[24]  Petter E. Bjørstad,et al.  High Precision Solutions of Two Fourth Order Eigenvalue Problems , 1999, Computing.

[25]  Aihui Zhou,et al.  The full approximation accuracy for the stream function-vorticity-pressure method , 1994 .

[26]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.