Space Interferometry Mission (SIM): technology completion and transition to flight

Optical interferometry will open new vistas for astronomy over the next decade. The Space Interferometry Mission, operating unfettered by the Earth's atmosphere, will offer unprecedented astrometric precision that promises the discovery of Earth-class extra-solar planets as well as a wealth of important astrophysics. Optical interometers also present severe technological challenges: laser metrology systems must perform with sub-nanometer precision; mechanical vibrations must be controlled to nanometers requiring orders of magnitude distrubance rejection; a multitude of actuators and sensors must operate flawlessly and in concert. The Jet Propulsion Laboratory along with its industry partners, Northrop Grumman Space Technology, and Lockheed Martin, are addressing these challenges with a technology development program that is nearing completion. Emphasis is shifting from technology demonstration to technology transfer to the flight team that wil build and launch the space system.

[1]  Kim M. Aaron,et al.  Space Interferometry Mission thermal design , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  Hugh C. Briggs Integrated modeling and design of advanced optical systems , 1992 .

[3]  M. Colavita Fringe Visibility Estimators for the Palomar Testbed Interferometer , 1998, astro-ph/9810462.

[4]  P. Kahn Space Interferometry Mission (SIM) Flight System , 2000 .

[5]  Peter G. Halverson,et al.  Signal processing and testing of displacement metrology gauges with picometre-scale cyclic nonlinearity , 2002 .

[6]  Andrew E. Carlson,et al.  Novel wide-field-of-view laser retroreflector for the Space Interferometry Mission , 1998, Astronomical Telescopes and Instrumentation.

[7]  Martin W Regehr,et al.  Automatic alignment of a displacement-measuring heterodyne interferometer. , 2002, Applied optics.

[8]  Mark H. Milman,et al.  Design optimization of the JPL Phase B testbed , 1993 .

[9]  Michael Shao,et al.  A Common-path, Multi-channel Heterodyne Laser Interferometer for Sub-nanometer Surface Metrology , 1999 .

[10]  Peter Kahn,et al.  Space Interferometry Mission: new system engineering approaches, tools, models and testbeds , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[11]  Mark Milman A Methodology for Finite Element Model Updating Using Modal Data , 1997 .

[12]  Stuart B. Shaklan,et al.  Metrology for the Micro-Arcsecond Metrology testbed , 1998, Astronomical Telescopes and Instrumentation.

[13]  O.S. Alvarez-Salazar,et al.  Space Interferometry Mission System testbed-3: external metrology inversion , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[14]  J. Wallace,et al.  Radii and Effective Temperatures for G, K, and M Giants and Supergiants , 1996 .

[15]  Renaud Goullioud,et al.  Microprecision interferometer: evaluation of new disturbance isolation solutions , 1998, Smart Structures.

[16]  Andrew E. Carlson,et al.  Optomechanical design of the Micro-Arcsecond Metrology testbed interferometer , 1998, Astronomical Telescopes and Instrumentation.

[17]  R. Calvet,et al.  Control Technology Readiness for Spaceborne Optical Interferometer Missions , 1997 .

[18]  Renaud Goullioud,et al.  Microprecision interferometer: scorecard on technology readiness for the Space Interferometer Mission , 2000, Astronomical Telescopes and Instrumentation.

[19]  Randall D. Bartos,et al.  Space beam combiner for long-baseline interferometry , 1999, Electronic Imaging.

[20]  Serge Dubovitsky,et al.  Metrology source for high-resolution heterodyne interferometer laser gauges , 1998, Astronomical Telescopes and Instrumentation.

[21]  et al,et al.  The Palomar Testbed Interferometer , 1999 .

[22]  R. A. Laskin,et al.  On multidisciplinary modeling of the Space Interferometry Mission , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[23]  K. Lau,et al.  The New Millennium separated spacecraft interferometer , 1997 .

[24]  Mark Milman,et al.  Mode shape expansion techniques for prediction : Experimental evaluation , 1996 .

[25]  Braden E. Hines,et al.  The Mark III stellar interferometer , 1988 .

[26]  Yekta Gursel Metrology for spatial interferometry IV , 1997, Optics & Photonics.

[27]  Andrew E. Carlson,et al.  First tests of the interferometer in the micro-arcsecond metrology testbed (MAM) , 2000, Astronomical Telescopes and Instrumentation.

[28]  P. Kahn Space Interferometry Mission: a systems perspective , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[29]  Benjamin Joffe,et al.  Enabling design concepts for a flight-qualifiable optical delay line , 1998, Astronomical Telescopes and Instrumentation.

[30]  Gary H. Blackwood,et al.  Optical delay line nanometer-level pathlength control law design for space-based interferometry , 1998, Astronomical Telescopes and Instrumentation.

[31]  K. M. Aaron SIM configuration evolution , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[32]  Mark H. Milman,et al.  Limits on adaptive optics systems for lightweight space telescopes , 1993, Defense, Security, and Sensing.

[33]  Tae W. Lim,et al.  Structural damage detection using modal test data , 1991 .

[34]  H. Gutierrez,et al.  Interferometry program flight experiment #1 : Objectives and results , 1998 .

[35]  R. Goullioud,et al.  Space Interferometry Mission System testbed-3: architecture , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).