Comparison of water phase diffusion experiments in laboratory and in situ conditions

[1]  M. Voutilainen,et al.  Neptunium(V) transport in granitic rock: A laboratory scale study on the influence of bentonite colloids , 2019, Applied Geochemistry.

[2]  M. Voutilainen,et al.  A Note on the Use of Uranine Tracer to Visualize Radionuclide Migration Experiments: Some Observations and Problems , 2019, Nuclear Technology.

[3]  M. Voutilainen,et al.  Through diffusion experiments to study the diffusion and sorption of HTO, 36Cl, 133Ba and 134Cs in crystalline rock. , 2019, Journal of contaminant hydrology.

[4]  M. Voutilainen,et al.  Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy , 2019, Applied Geochemistry.

[5]  F. Huber,et al.  Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures. , 2019, Journal of contaminant hydrology.

[6]  H. Satoh,et al.  Effects of Fine‐Scale Surface Alterations on Tracer Retention in a Fractured Crystalline Rock From the Grimsel Test Site , 2018, Water Resources Research.

[7]  S. Ji,et al.  Numerical simulation of anomalous observations from an in-situ long-term sorption diffusion experiment in a rock matrix , 2018, Journal of Hydrology.

[8]  M. Voutilainen,et al.  Electromigration experiments for studying transport parameters and sorption of cesium and strontium on intact crystalline rock. , 2018, Journal of contaminant hydrology.

[9]  L. Koskinen,et al.  Analysis of 3H, 36Cl, 133Ba, 134Cs and 22Na from synthetic granitic groundwater: an in situ through diffusion experiment at ONKALO , 2018, Journal of Radioanalytical and Nuclear Chemistry.

[10]  T. Turpeinen,et al.  Imaging connected porosity of crystalline rock by contrast agent‐aided X‐ray microtomography and scanning electron microscopy , 2018, Journal of microscopy.

[11]  L. Koskinen,et al.  The sorption and diffusion of 133Ba in crushed and intact granitic rocks from the Olkiluoto and Grimsel in-situ test sites , 2018 .

[12]  J. Molinero,et al.  Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock. , 2017, Journal of contaminant hydrology.

[13]  M. Voutilainen,et al.  Multi-scale study of the mineral porosity of veined gneiss and pegmatitic granite from Olkiluoto, Western Finland , 2017, Journal of Radioanalytical and Nuclear Chemistry.

[14]  M. Voutilainen,et al.  Laboratory scale advection-matrix diffusion experiment in Olkiluoto veined gneiss using H-3 and Cl-36 as tracers , 2017 .

[15]  M. Voutilainen,et al.  Chloride diffusion in pore water in Olkiluoto veined gneiss and pegmatitic granite from a structural perspective , 2016 .

[16]  M. Voutilainen,et al.  Through diffusion study on Olkiluoto veined gneiss and pegmatitic granite from a structural perspective , 2016 .

[17]  J. Timonen,et al.  Gas Phase Measurements of Matrix Diffusion in Rock Samples from Olkiluoto Bedrock, Finland , 2016, Transport in Porous Media.

[18]  Andrew Martin,et al.  Behavior of Cs in Grimsel granodiorite: sorption on main minerals and crushed rock , 2016 .

[19]  Y. Tachi,et al.  Matrix diffusion and sorption of Cs+, Na+, I- and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition. , 2015, Journal of contaminant hydrology.

[20]  Vaclava Havlova,et al.  Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site. , 2015, Journal of contaminant hydrology.

[21]  M. Voutilainen,et al.  Measurement of 3H, 36Cl, 22Na, 85Sr and 133Ba activities from synthetic groundwater , 2015, Journal of Radioanalytical and Nuclear Chemistry.

[22]  J. Timonen,et al.  Gas Phase Measurements of Porosity, Diffusion Coefficient, and Permeability in Rock Samples from Olkiluoto Bedrock, Finland , 2015, Transport in Porous Media.

[23]  A. Lindberg,et al.  Modeling of cesium sorption on biotite using cation exchange selectivity coefficients , 2014 .

[24]  P. Kekäläinen Analytical solutions to matrix diffusion problems , 2014 .

[25]  Y. Tachi,et al.  Diffusion and sorption of Cs+, Na+, I− and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model , 2014 .

[26]  Mikko Voutilainen,et al.  Solutions to and Validation of Matrix-Diffusion Models , 2011 .

[27]  M. Glaus,et al.  Comparative study of tracer diffusion of HTO, 22Na+ and 36Cl− in compacted kaolinite, illite and montmorillonite , 2010 .

[28]  D. Henderson,et al.  Insights from theory and simulation on the electrical double layer. , 2009, Physical chemistry chemical physics : PCCP.

[29]  I. Neretnieks,et al.  Determination of sorption properties of intact rock samples: new methods based on electromigration. , 2009, Journal of contaminant hydrology.

[30]  Luc R. Van Loon,et al.  Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion , 2007 .

[31]  Peter Pivonka,et al.  Theoretical Analysis of Anion Exclusion and Diffusive Transport Through Platy-Clay Soils , 2004 .

[32]  T. Doe,et al.  In situ tracer tests to determine retention properties of a block scale fracture network in granitic rock at the Aspö Hard Rock Laboratory, Sweden. , 2004, Journal of contaminant hydrology.

[33]  H. G. Miller,et al.  In situ diffusion experiment in granite: phase I. , 2003, Journal of contaminant hydrology.

[34]  M. Siitari-Kauppi,et al.  Attempt to model laboratory-scale diffusion and retardation data. , 2001, Journal of contaminant hydrology.

[35]  H. Johansson,et al.  Diffusion pathways in crystalline rock—examples from Äspö-diorite and fine-grained granite , 1998 .

[36]  C. Tsang,et al.  Flow channeling in heterogeneous fractured rocks , 1998 .

[37]  J. Hadermann,et al.  The Grimsel (Switzerland) migration experiment : integrating field experiments, laboratory investigations and modelling , 1996 .

[38]  E. Hawlicka Self-Diffusion of Sodium, Chloride and Iodide Ions in Acetonitrile-Water Mixtures , 1987 .

[39]  Ivars Neretnieks,et al.  Porosities and Diffusivities of Some Nonsorbing Species in Crystalline Rocks , 1986 .

[40]  E. A. Sudicky,et al.  Contaminant transport in fractured porous media: Analytical solution for a single fracture , 1981 .

[41]  Ivars Neretnieks,et al.  Diffusion in the rock matrix: An important factor in radionuclide retardation? , 1980 .

[42]  F. D. Haan The Negative Adsorption of Anions (Anion Exclusion) in Systems with Interacting Double Layers , 1964 .

[43]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[44]  A. Lindberg,et al.  Cesium sorption and diffusion on crystalline rock: Olkiluoto case study , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[45]  P. Sardini,et al.  In situ migration of tritiated water and iodine in Grimsel granodiorite, part II: assessment of the diffusion coefficients by TDD modelling , 2016, Journal of Radioanalytical and Nuclear Chemistry.

[46]  G. Keller Electrical properties of rock , 2014 .

[47]  M. Voutilainen,et al.  Validation of matrix diffusion modeling , 2010 .

[48]  M. Löfgren Diffusive properties of granitic rock as measured by in-situ electrical methods , 2005 .

[49]  Y. Ohlsson Studies of ionic diffusion in crystalline rock , 2001 .

[50]  J. R. Jones,et al.  Diffusion coefficient of water in water and in some alkaline earth chloride solutions at 25°C , 1965 .