Design and optimization of MOS current mode logic for parameter variations

An automated optimization-based design strategy is proposed for single-level MOS Current Mode Logic (MCML) gates to overcome the complexities of the gate design procedure. The proposed design methodology determines the values of the design variables that achieve the minimum power dissipation point while attaining the required performance. The proposed design methodology has the advantage of speed, accuracy, and ability to include a large number of parameters in the design problem. Moreover, a formulation for the impact of parameter variations on the MCML gate performance is presented. The proposed strategy is used to design two popular circuits, namely; the ring oscillator and clock distribution network drivers with an average error from the required performance within 8%. The dependence of the gate parameters on parameter variations is used with the design methodology to redesign the same circuits while considering parameter variations. Furthermore, the impact of parameter variations as the technology scales down is investigated.

[1]  Anurag Mittal,et al.  Design for Variability , 2005 .

[2]  P. Nilsson,et al.  A digitally controlled PLL for SoC applications , 2004, IEEE Journal of Solid-State Circuits.

[3]  Zhinian Shu,et al.  A 2.4-GHz ring-oscillator-based CMOS frequency synthesizer with a fractional divider dual-PLL architecture , 2004, IEEE Journal of Solid-State Circuits.

[4]  S. Bruma Impact of on-chip process variations performance on MCML [MOS current mode logic] , 2003, IEEE International [Systems-on-Chip] SOC Conference, 2003. Proceedings..

[5]  Jaeha Kim,et al.  Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[6]  K. Ghose,et al.  Reducing reorder buffer complexity through selective operand caching , 2003, Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03..

[7]  Christoph Sandner,et al.  A subpicosecond jitter PLL for clock generation in 0.12-/spl mu/m digital CMOS , 2003 .

[8]  Massimo Alioto,et al.  Design strategies for source coupled logic gates , 2003 .

[9]  B. Zhang,et al.  A fast switching PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25-μm CMOS , 2003, IEEE J. Solid State Circuits.

[10]  Reduced delay uncertainty in high performance clock distribution networks , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[11]  Manoj Sachdev,et al.  A method to derive an equation for the oscillation frequency of a ring oscillator , 2003 .

[12]  Behzad Razavi,et al.  A 10-Gb/s CMOS clock and data recovery circuit with a half-rate binary phase/frequency detector , 2003, IEEE J. Solid State Circuits.

[13]  Jan M. Rabaey Digital Integrated Circuits: A Design Perspective By Jan M. Rabaey , 2003 .

[14]  James D. Meindl,et al.  Electrical and optical clock distribution networks for gigascale microprocessors , 2002, IEEE Trans. Very Large Scale Integr. Syst..

[15]  Nasser A. Kurd,et al.  A multigigahertz clocking scheme for the Pentium(R) 4 microprocessor , 2001, IEEE J. Solid State Circuits.

[16]  Lizhong Sun,et al.  A 1.25-GHz 0.35-μm monolithic CMOS PLL based on a multiphase ring oscillator , 2001, IEEE J. Solid State Circuits.

[17]  Eby G. Friedman,et al.  Clock distribution networks in synchronous digital integrated circuits , 2001, Proc. IEEE.

[18]  B. Razavi,et al.  A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector , 2001, IEEE J. Solid State Circuits.

[19]  B. Razavi,et al.  A CMOS clock recovery circuit for 2.5-Gb/s NRZ data , 2001, IEEE J. Solid State Circuits.

[20]  C.A.T. Salama,et al.  A two-stage differential CCO implementation in submicron CMOS , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[21]  Ramesh Harjani,et al.  Analysis and design of low-phase-noise ring oscillators , 2000, ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514).

[22]  Jan M. Rabaey,et al.  MOS current mode logic for low power, low noise CORDIC computation in mixed-signal environments , 2000, ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514).

[23]  K.A. Jenkins,et al.  A clock distribution network for microprocessors , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[24]  Sani R. Nassif Design for Variability in DSM Technologies , 2000 .

[25]  Beomsup Kim,et al.  A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[26]  Chenming Hu,et al.  MOSFET Modeling & BSIM3 User’s Guide , 1999 .

[27]  P. Zarkesh-Ha,et al.  Characterization and modeling of clock skew with process variations , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[28]  M. Horowitz,et al.  A 0.5-μm CMOS 4.0-Gbit/s serial link transceiver with data recovery using oversampling , 1998, IEEE J. Solid State Circuits.

[29]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[30]  Masakazu Yamashina,et al.  An MOS Current Mode Logic (MCML) Circuit for Low-Power Sub-GHz Processors , 1992 .

[31]  Soha Hassoun,et al.  A 200-MHz 64-bit Dual-Issue CMOS Microprocessor , 1992, Digit. Tech. J..

[32]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.