Li-O2 and Li-S batteries with high energy storage.

Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

[1]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[2]  Jürgen Garche,et al.  Encyclopedia of electrochemical power sources , 2009 .

[3]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[4]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[5]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[6]  Steven J. Visco,et al.  A Novel Class of Organosulfur Electrodes for Energy Storage , 1989 .

[7]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[8]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[9]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[10]  Hubert A. Gasteiger,et al.  Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries , 2011 .

[11]  Zhen Zhou,et al.  Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites , 2009 .

[12]  K. M. Abraham,et al.  Lithium-air and lithium-sulfur batteries , 2011 .

[13]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[14]  Peter G. Bruce,et al.  Energy storage beyond the horizon: Rechargeable lithium batteries , 2008 .

[15]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[16]  Jason Xu,et al.  Rechargeable Li-S Battery with Specific Energy 350 Wh/kg and Specific Power 3000 W/kg. , 2008 .

[17]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[18]  Robert T. Kennedy,et al.  Electrochemical Properties of Organic Disulfide/ Thiolate Redox Couples , 2013 .

[19]  Jason Xu,et al.  High Energy Rechargeable Li-S Cells for EV Application: Status, Remaining Problems and Solutions , 2010 .

[20]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[21]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[22]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[23]  K. W. Kim,et al.  Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell , 2007 .

[24]  Haoshen Zhou,et al.  A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. , 2010, Chemical communications.

[25]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature communications.

[26]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[27]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[28]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[29]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[30]  Jun Chen,et al.  Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries , 2006 .

[31]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[32]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[33]  Héctor D. Abruña,et al.  Synthesis, computational and electrochemical characterization of a family of functionalized dimercap , 2007 .

[34]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[35]  J. Niu,et al.  An approach to carbon nanotubes with high surface area and large pore volume , 2007 .

[36]  Sang-Cheol Han,et al.  Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries , 2003 .

[37]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[38]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[39]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery II. Rate Capability and Cycle Characteristics , 2003 .

[40]  Xinping Qiu,et al.  Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries , 2009 .

[41]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[42]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[43]  Tao Zhang,et al.  Stability of Li/Polymer Electrolyte-Ionic Liquid Composite/Lithium Conducting Glass Ceramics in an Aqueous Electrolyte , 2011 .

[44]  Elton J. Cairns,et al.  Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte , 2008 .

[45]  Jean-Marie Tarascon,et al.  Fundamental Mechanism of the Lithium-Air Battery , 2010 .

[46]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[47]  Jou-Hyeon Ahn,et al.  Improvement of cycle property of sulfur electrode for lithium/sulfur battery , 2008 .

[48]  Jou-Hyeon Ahn,et al.  for Rechargeable Lithium Batteries , 2009 .

[49]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[50]  Wu Xu,et al.  High Capacity Pouch-Type Li–Air Batteries , 2010 .

[51]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[52]  Jagjit Nanda,et al.  Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes , 2011 .

[53]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[54]  Tao Zhang,et al.  A novel high energy density rechargeable lithium/air battery. , 2009, Chemical communications.

[55]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[56]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[57]  Peter Hall,et al.  Preparation of controlled porosity carbon-aerogels for energy storage in rechargeable lithium oxygen batteries , 2009 .

[58]  Lin Lu,et al.  Sulfur-graphene composite for rechargeable lithium batteries , 2011 .

[59]  Odile Fichet,et al.  Development of a Lithium Air Rechargeable Battery , 2010, ECS Transactions.

[60]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[61]  Emanuel Peled,et al.  The electrochemical behavior of polysulfides in tetrahydrofuran , 1985 .

[62]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[63]  Richard Wills,et al.  Batteries for Portable Devices , 2006 .

[64]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[65]  Jian Zhang,et al.  Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries , 2010 .

[66]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[67]  H. Gasteiger,et al.  Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries , 2010 .

[68]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[69]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[70]  Keith Scott,et al.  Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries , 2010 .

[71]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[72]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[73]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[74]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes , 2007 .

[75]  Jeffrey Read,et al.  A high energy density lithium/sulfur–oxygen hybrid battery , 2010 .

[76]  마사히로 기쿠치,et al.  Lithium ion rechargeable battery , 2006 .

[77]  Emanuel Peled,et al.  Rechargeable lithiumsulfur battery (extended abstract) , 1989 .

[78]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[79]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[80]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[81]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[82]  Wenbin Zheng,et al.  Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries , 2006 .

[83]  Lei Wen,et al.  PVC DISULFIDE AS CATHODE MATERIALS FOR SECONDARY LITHIUM BATTERIES , 2006 .

[84]  Jean-Marie Tarascon,et al.  Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide , 2006 .

[85]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[86]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[87]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes I . Transient Passivation , 1976 .

[88]  Y·V·米克海利克 Electrolytes for lithium sulfur cells , 2005 .

[89]  Yong-Mook Kang,et al.  Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries , 2004 .

[90]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[91]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[92]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[93]  Jingying Xie,et al.  Lithium storage in conductive sulfur-containing polymers , 2004 .

[94]  Bruno Scrosati,et al.  A high-performance polymer tin sulfur lithium ion battery. , 2010, Angewandte Chemie.

[95]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[96]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[97]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[98]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[99]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[100]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[101]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME-LiPF 6 ÕO 2 Battery , 2011 .

[102]  Nansheng Xu,et al.  Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte , 2002 .

[103]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[104]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[105]  Ping He,et al.  The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid ele , 2011 .

[106]  Jean-Marie Tarascon,et al.  H2O2 Decomposition Reaction as Selecting Tool for Catalysts in Li – O2 Cells , 2010 .

[107]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[108]  K. W. Kim,et al.  Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions , 2007 .

[109]  Zaiping Guo,et al.  Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery , 2009 .

[110]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[111]  Shichao Zhang,et al.  Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries , 2010 .

[112]  Bruno Scrosati,et al.  Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. , 2011, Angewandte Chemie.

[113]  Julian L. Roberts,et al.  Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes , 1966 .

[114]  D. Linden Handbook Of Batteries , 2001 .

[115]  Li Li,et al.  Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries , 2011 .

[116]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[117]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[118]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[119]  Héctor D. Abruña,et al.  Poly[dithio-2,5-(1,3,4-thiadiazole)] (PDMcT)-poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode for high-energy lithium/lithium-ion rechargeable batteries , 2007 .

[120]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[121]  K. C. Tsai,et al.  Anodic Behavior of Lithium in Aqueous Electrolytes IV . Influence of Temperature , 1976 .

[122]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[123]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[124]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[125]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[126]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[127]  Minoru Matsuda,et al.  Study on the reduction species of sulfur by alkali metals in nonaqueous solvents , 1997 .

[128]  Christopher S. Johnson,et al.  Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li–O2 Cells , 2011 .

[129]  Emanuel Peled,et al.  Lithium Sulfur Battery. Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions. , 1988 .

[130]  Sheng Li,et al.  Layer Structured Sulfur/Expanded Graphite Composite as Cathode for Lithium Battery , 2011 .

[131]  R. D. Rauh,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[132]  Zhenguo Yang,et al.  Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. , 2011, Physical chemistry chemical physics : PCCP.