Linear Rank-Width and Linear Clique-Width of Trees

We show that for every forest T the linear rank-width of T is equal to the path-width of T, and we show that the linear clique-width of T equals the path-width of T plus two, provided that T contains a path of length three. It follows that both linear rank-width and linear clique-width of forests can be computed in linear time. Using our characterization of linear rank-width of forests, we determine the set of minimal excluded acyclic vertex-minors for the class of graphs of linear rank-width at most k.

[1]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..

[2]  Jens Lagergren,et al.  Upper Bounds on the Size of Obstructions and Intertwines , 1998, J. Comb. Theory, Ser. B.

[3]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[4]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory, Ser. B.

[5]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[6]  Arthur M. Farley,et al.  Obstructions for linear rankwidth at most 1 , 2011, ArXiv.

[7]  O-joung Kwon,et al.  Excluded vertex-minors for graphs of linear rank-width at most k , 2013, STACS.

[8]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[9]  Sang-il Oum,et al.  Rank-Width and Well-Quasi-Ordering , 2008, SIAM J. Discret. Math..

[10]  André Bouchet Transforming trees by successive local complementations , 1988, J. Graph Theory.

[11]  Robert Ganian Thread Graphs, Linear Rank-Width and Their Algorithmic Applications , 2010, IWOCA.

[12]  Frank Gurski,et al.  Linear layouts measuring neighbourhoods in graphs , 2006, Discret. Math..

[13]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[14]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[15]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..

[16]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[17]  Ton Kloks,et al.  Approximating Treewidth and Pathwidth of some Classes of Perfect Graphs , 1992, ISAAC.

[18]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[19]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[20]  Atsushi Takahashi,et al.  Minimal acyclic forbidden minors for the family of graphs with bounded path-width , 1994, Discret. Math..

[21]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[22]  Arthur M. Farley,et al.  Obstructions for linear rank-width at most 1 , 2014, Discret. Appl. Math..

[23]  Pinar Heggernes,et al.  A Complete Characterisation of the Linear Clique-Width of Path Powers , 2009, TAMC.

[24]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[25]  Egon Wanke,et al.  The NLC-width and clique-width for powers of graphs of bounded tree-width , 2009, Discret. Appl. Math..

[26]  Pinar Heggernes,et al.  Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs , 2012, Discret. Appl. Math..

[27]  Ioan Todinca,et al.  Pathwidth of Circular-Arc Graphs , 2007, WG.

[28]  Egon Wanke,et al.  On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..

[29]  Frank Gurski,et al.  Characterizations for co-graphs defined by restricted NLC-width or clique-width operations , 2006, Discret. Math..

[30]  Dieter Rautenbach,et al.  The relative clique-width of a graph , 2007, J. Comb. Theory, Ser. B.

[31]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[32]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..