A node reconnection algorithm for mimetic finite difference discretizations of elliptic equations on triangular meshes

Most ecient adaptive mesh methods employ a few strategies, including local mesh refinement (h-adaptation), movement of mesh nodes (r-adaptation), and node reconnection (c-adaptation). Despite its simplicity, node reconnection methods are seldom analyzed apart from the other adaptation methods even in applications where severe restrictions are imposed on topo- logical operations with a mesh. However, using only node reconnection the discretization error can be significantly reduced. In this paper, we develop and numerically analyze a new c-adaptation algorithm for mimetic finite dierence discretizations of elliptic equations on triangular meshes. Our algorithm is based on a new error indicator for such discretizations, which can also be used for unstructured general polygonal meshes. We demonstrate the eciency of our new algorithm with numerical examples.

[1]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[2]  B. D. Veubeke Displacement and equilibrium models in the finite element method , 1965 .

[3]  M. Shashkov,et al.  The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .

[4]  Yuri V. Vassilevski,et al.  Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .

[5]  Victor G. Ganzha,et al.  Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..

[6]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[9]  R. Garimella,et al.  Untangling of 2D meshes in ALE simulations , 2004 .

[10]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[11]  Barbara I. Wohlmuth,et al.  A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..

[12]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[13]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[14]  Christoph Zenger,et al.  Support operator method for Laplace equation on unstructured triangular grid , 2002 .

[15]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[16]  Weizhang Huang,et al.  A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .

[17]  Mary F. Wheeler,et al.  Superconvergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals , 2005, SIAM J. Numer. Anal..

[18]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Diffusion Equations on Unstructured Triangular Grid , 2004 .

[19]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[20]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[21]  Charles K. Mesztenyi,et al.  On a Data Structure for Adaptive Finite Element Mesh Refinements , 1980, TOMS.

[22]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[23]  M. Shashkov,et al.  Mimetic Finite Difference Methods for Diffusion Equations , 2002 .

[24]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..