A node reconnection algorithm for mimetic finite difference discretizations of elliptic equations on triangular meshes
暂无分享,去创建一个
Pavel Váchal | Mikhail Shashkov | Markus Berndt | Konstantin Lipnikov | M. Shashkov | P. Váchal | K. Lipnikov | M. Berndt
[1] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[2] B. D. Veubeke. Displacement and equilibrium models in the finite element method , 1965 .
[3] M. Shashkov,et al. The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes , 2006 .
[4] Yuri V. Vassilevski,et al. Adaptive generation of quasi-optimal tetrahedral meshes , 1999 .
[5] Victor G. Ganzha,et al. Analysis and optimization of inner products for mimetic finite difference methods on a triangular grid , 2004, Math. Comput. Simul..
[6] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[7] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[8] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[9] R. Garimella,et al. Untangling of 2D meshes in ALE simulations , 2004 .
[10] Gustavo C. Buscaglia,et al. Anisotropic mesh optimization and its application in adaptivity , 1997 .
[11] Barbara I. Wohlmuth,et al. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..
[12] E. F. D'Azevedo,et al. On optimal triangular meshes for minimizing the gradient error , 1991 .
[13] J. Brackbill,et al. Adaptive zoning for singular problems in two dimensions , 1982 .
[14] Christoph Zenger,et al. Support operator method for Laplace equation on unstructured triangular grid , 2002 .
[15] M. Shashkov,et al. The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .
[16] Weizhang Huang,et al. A two-dimensional moving finite element method with local refinement based on a posteriori error estimates , 2003 .
[17] Mary F. Wheeler,et al. Superconvergence of the Velocity in Mimetic Finite Difference Methods on Quadrilaterals , 2005, SIAM J. Numer. Anal..
[18] M. Shashkov,et al. Mimetic Finite Difference Methods for Diffusion Equations on Unstructured Triangular Grid , 2004 .
[19] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[20] J. M. Hyman,et al. Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .
[21] Charles K. Mesztenyi,et al. On a Data Structure for Adaptive Finite Element Mesh Refinements , 1980, TOMS.
[22] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[23] M. Shashkov,et al. Mimetic Finite Difference Methods for Diffusion Equations , 2002 .
[24] J. David Moulton,et al. Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..