Solvent-induced surface disorder and doping-induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching

Photoreversible color switching based on anatase TiO2 nanocrystals was regulated by solvent-induced surface disorder and Sn2+ doping-induced lattice distortion.

[1]  J. Zou,et al.  High-performance SnSe thermoelectric materials: Progress and future challenge , 2018, Progress in Materials Science.

[2]  X. Duan,et al.  Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. , 2018, Chemical Society reviews.

[3]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[4]  Seyyed Shayan Meysami,et al.  Low‐Cost Chitosan‐Derived N‐Doped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes , 2018 .

[5]  M. I. Khazi,et al.  Functional Materials and Systems for Rewritable Paper , 2018, Advanced materials.

[6]  Yadong Yin,et al.  Photocatalytic Reversible Color Switching Based on Titania Nanoparticles , 2018 .

[7]  Zhiqun Lin,et al.  Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles , 2018, Proceedings of the National Academy of Sciences.

[8]  Wenge Yang,et al.  High-Pressure Band-Gap Engineering in Lead-Free Cs2 AgBiBr6 Double Perovskite. , 2017, Angewandte Chemie.

[9]  Dan Han,et al.  Photocatalytic Self-Doped SnO2-x Nanocrystals Drive Visible-Light-Responsive Color Switching. , 2017, Angewandte Chemie.

[10]  T. Leichtweiss,et al.  Mesoporous niobium-doped titanium dioxide films from the assembly of crystalline nanoparticles: study on the relationship between the band structure, conductivity and charge storage mechanism , 2017 .

[11]  Yi-sheng Liu,et al.  Photocatalytic Color Switching of Transition Metal Hexacyanometalate Nanoparticles for High-Performance Light-Printable Rewritable Paper. , 2017, Nano letters.

[12]  C. Boldrini,et al.  Hot Electron Collection on Brookite Nanorods Lateral Facets for Plasmon-Enhanced Water Oxidation , 2017 .

[13]  Yadong Yin,et al.  Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. , 2017, Water research.

[14]  A. Xu,et al.  Oxygen-Deficient TiO2 - x/Methylene Blue Colloids: Highly Efficient Photoreversible Intelligent Ink. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[15]  Yili Zhang,et al.  Facile Approach for the Syntheses of Ultrafine TiO2 Nanocrystallites with Defects and C Heterojunction for Photocatalytic Water Splitting , 2016 .

[16]  Sanjay Gopal Ullattil,et al.  A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2−x solar photocatalyst , 2016 .

[17]  X. Duan,et al.  Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals , 2016, Nature Communications.

[18]  Zhiqun Lin,et al.  Plasmon‐Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites , 2016, Advanced science.

[19]  G. De,et al.  Functionalized C@TiO2 hollow spherical architecture for multifunctional applications. , 2016, Dalton transactions.

[20]  Zaiping Guo,et al.  Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[21]  X. Duan,et al.  Synthesis of Stable Shape-Controlled Catalytically Active β-Palladium Hydride. , 2015, Journal of the American Chemical Society.

[22]  M. Marelli,et al.  α-Fe2O3/NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation , 2015 .

[23]  Zhiqun Lin,et al.  An unconventional route to monodisperse and intimately contacted semiconducting organic-inorganic nanocomposites. , 2015, Angewandte Chemie.

[24]  Jinlong Gong,et al.  Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting , 2015, Advanced materials.

[25]  Zhe Wang,et al.  Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride , 2015, Nature Communications.

[26]  M. Chi,et al.  Enhanced photoreversible color switching of redox dyes catalyzed by barium-doped TiO2 nanocrystals. , 2015, Angewandte Chemie.

[27]  P. Radovanovic,et al.  Controlling the mechanism of phase transformation of colloidal In2O3 nanocrystals. , 2015, Journal of the American Chemical Society.

[28]  G. De,et al.  Low Temperature Fabrication of Photoactive Anatase TiO2 Coating and Phosphor from Water–Alcohol Dispersible Nanopowder , 2015 .

[29]  Landong Li,et al.  Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production , 2015, Nature Communications.

[30]  K. Leung,et al.  Engineered Electronic States of Transition Metal Doped TiO2 Nanocrystals for Low Overpotential Oxygen Evolution Reaction , 2014 .

[31]  Le He,et al.  Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper , 2014, Nature Communications.

[32]  G. De,et al.  Electrospun anatase TiO2 nanofibers with ordered mesoporosity , 2014 .

[33]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[34]  G. De,et al.  TiO2 nanoparticles doped SiO2 films with ordered mesopore channels: a catalytic nanoreactor. , 2014, Dalton transactions.

[35]  Miaomiao Ye,et al.  Nanocrystalline TiO₂-catalyzed photoreversible color switching. , 2014, Nano letters.

[36]  Chaochao Fu,et al.  Kinetic Control over YVO4:Eu3+ Nanoparticles for Tailored Structure and Luminescence Properties , 2014 .

[37]  A. Xu,et al.  Synproportionation Reaction for the Fabrication of Sn2+ Self-Doped SnO2-x Nanocrystals with Tunable Band Structure and Highly Efficient Visible Light Photocatalytic Activity , 2013 .

[38]  Nan Zhang,et al.  Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. , 2013, Nanoscale.

[39]  Zhiqun Lin,et al.  Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. , 2013, Small.

[40]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[41]  M. Kormunda,et al.  Hydrogen peroxide route to Sn-doped titania photocatalysts , 2012, Chemistry Central Journal.

[42]  M. Marelli,et al.  Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.

[43]  Yucheng He,et al.  Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array , 2012 .

[44]  Ting Wang,et al.  Interplay between size, composition, and phase transition of nanocrystalline Cr(3+)-doped BaTiO3 as a path to multiferroism in perovskite-type oxides. , 2012, Journal of the American Chemical Society.

[45]  Shiwei Lin,et al.  Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. , 2012, ACS applied materials & interfaces.

[46]  Zhiqun Lin,et al.  Surface-treated TiO2 nanoparticles for dye-sensitized solar cells with remarkably enhanced performance. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[47]  A. Biacchi,et al.  The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. , 2011, ACS nano.

[48]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[49]  C. Linsmeier,et al.  Strong metal–support interactions on rhodium model catalysts , 2011 .

[50]  M. Titirici,et al.  Solvothermal carbon-doped TiO2 photocatalyst for the enhanced methylene blue degradation under visible light , 2010 .

[51]  Yuhan Sun,et al.  One‐Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible‐Light Photocatalysis , 2010, Advanced materials.

[52]  Jiaguo Yu,et al.  Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1) facets for the photocatalytic degradation of acetone in air , 2010 .

[53]  S. G. Kumar,et al.  Preparation and Characterization of Mn-Doped Titanates with a Bicrystalline Framework: Correlation of the Crystallite Size with the Synergistic Effect on the Photocatalytic Activity , 2009 .

[54]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts† , 2008 .

[55]  Yugang Sun,et al.  A self-templated approach to TiO2 microcapsules. , 2007, Nano letters.

[56]  H. Fu,et al.  Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity , 2006 .

[57]  Masahiro Yoshimura,et al.  A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. , 2006, Angewandte Chemie.

[58]  Brian F. Woodfield,et al.  Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals , 2004 .

[59]  H. Cox,et al.  Molecular view of the anomalous acidities of Sn2+, Pb2+, and Hg2+. , 2004, Journal of the American Chemical Society.

[60]  Kazunori Kataoka,et al.  Quantitative and Reversible Lectin-Induced Association of Gold Nanoparticles Modified with α-Lactosyl-ω-mercapto-poly(ethylene glycol) , 2001 .

[61]  Y. Kawazoe,et al.  Origin of anomalous lattice expansion in oxide nanoparticles , 2000, Physical review letters.

[62]  Chelikowsky,et al.  Structural and electronic properties of titanium dioxide. , 1992, Physical review. B, Condensed matter.