Multidimensional rotations for robust quantization of image data

Laplacian and generalized Gaussian data arise in the transform and subband coding of images. This paper describes a method of rotating independent, identically distributed (i.i.d.) Laplacian-like data in multiple dimensions to significantly improve the overload characteristics for quantization. The rotation is motivated by the geometry of the Laplacian probability distribution, and can be achieved with only additions and subtractions using a Walsh-Hadamard transform. Its theoretical and simulated results for scalar, lattice, and polar quantization are presented in this paper, followed by a direct application to image compression. We show that rotating the image data before quantization not only improves compression performance, but also increases robustness to the channel noise and deep fades often encountered in wireless communication.

[1]  James D. Johnston,et al.  A filter family designed for use in quadrature mirror filter banks , 1980, ICASSP.

[2]  Abraham Lempel,et al.  On Fast M-Sequence Transforms , 1998 .

[3]  P. F. Panter,et al.  Quantization distortion in pulse-count modulation with nonuniform spacing of levels , 1951, Proceedings of the IRE.

[4]  Richard E. Ladner,et al.  Codebook organization to enhance maximum a posteriori detection of progressive transmission of vector quantized images over noisy channels , 1996, IEEE Trans. Image Process..

[5]  Bernd Girod,et al.  Vector quantization for entropy coding of image subbands , 1992, IEEE Trans. Image Process..

[6]  Peter F. Swaszek,et al.  Asymptotic performance of unrestricted polar quantizers , 1986, IEEE Trans. Inf. Theory.

[7]  Michel Barlaud,et al.  Image coding using lattice vector quantization of wavelet coefficients , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[8]  Thomas R. Fischer,et al.  Geometric source coding and vector quantization , 1989, IEEE Trans. Inf. Theory.

[9]  Jerry D. Gibson,et al.  Uniform and piecewise uniform lattice vector quantization for memoryless Gaussian and Laplacian sources , 1993, IEEE Trans. Inf. Theory.

[10]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[11]  Yoshitaka Morikawa,et al.  Using M-Transformation to Improve Performance of DCT Zonal Coding , 1989, Other Conferences.

[12]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[13]  Michel Barlaud,et al.  Image coding using wavelet transform , 1992, IEEE Trans. Image Process..

[14]  Jos H. Weber,et al.  Adaptive channel error protection of subband encoded images , 1993, IEEE Trans. Commun..

[15]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[16]  Jerry D. Gibson,et al.  Distributions of the Two-Dimensional DCT Coefficients for Images , 1983, IEEE Trans. Commun..

[17]  Jean-Pierre Adoul,et al.  Nearest neighbor algorithm for spherical codes from the Leech lattice , 1988, IEEE Trans. Inf. Theory.

[18]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[19]  Allen Gersho,et al.  On the structure of vector quantizers , 1982, IEEE Trans. Inf. Theory.

[20]  R. Durrett Probability: Theory and Examples , 1993 .

[21]  S. Agaian Hadamard Matrices and Their Applications , 1985 .

[22]  W. Pearlman,et al.  Polar Quantization of a Complex Gaussian Random Variable , 1979, IEEE Trans. Commun..

[23]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[24]  James A. Bucklew,et al.  Two-dimensional quantization of bivariate circularly symmetric densities , 1979, IEEE Trans. Inf. Theory.

[25]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Wolfgang Mauersberger,et al.  Experimental results on the performance of mismatched quantizers , 1979, IEEE Trans. Inf. Theory.

[27]  James A. Bucklew A note on optimal multidimensional companders , 1983, IEEE Trans. Inf. Theory.

[28]  Teresa H. Y. Meng,et al.  Adaptive channel optimization of vector quantized data , 1993, [Proceedings] DCC `93: Data Compression Conference.

[29]  P. Noll,et al.  Comments on "Quantizing characteristics for signals having Laplacian amplitude probability density function" , 1979, IEEE Trans. Commun..

[30]  Jerry D. Gibson,et al.  An algorithm for uniform vector quantizer design , 1984, IEEE Trans. Inf. Theory.

[31]  Thomas R. Fischer,et al.  A pyramid vector quantizer , 1986, IEEE Trans. Inf. Theory.

[32]  Nariman Farvardin,et al.  Subband Image Coding Using Entropy-Coded Quantization over Noisy Channels , 1992, IEEE J. Sel. Areas Commun..

[33]  N. Rydbeck,et al.  Analysis of Digital Errors in Nonlinear PCM Systems , 1976, IEEE Trans. Commun..

[34]  Jacob Ziv,et al.  On universal quantization , 1985, IEEE Trans. Inf. Theory.

[35]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[36]  H. Strube How to make an all-pass filter with a desired impulse response , 1982 .

[37]  William C. Y. Lee,et al.  Mobile Cellular Telecommunications Systems , 1989 .

[38]  Anil K. Jain,et al.  Image data compression: A review , 1981, Proceedings of the IEEE.

[39]  Andy C. Hung Geometric coding for error resilient image compression , 1995 .

[40]  Herbert Gish,et al.  Asymptotically efficient quantizing , 1968, IEEE Trans. Inf. Theory.

[41]  Michel Barlaud,et al.  Pyramidal lattice vector quantization for multiscale image coding , 1994, IEEE Trans. Image Process..

[42]  Joel Max,et al.  Quantizing for minimum distortion , 1960, IRE Trans. Inf. Theory.

[43]  Yoshitaka Morikawa,et al.  Effects of M-transform for bit-error resilement in the adaptive DCT coding , 1991, Other Conferences.

[44]  Fabio Bellifemine,et al.  Statistical analysis of the 2D-DCT coefficients of the differential signal for images , 1992, Signal Process. Image Commun..

[45]  William A. Pearlman,et al.  Source coding of the discrete Fourier transform , 1978, IEEE Trans. Inf. Theory.

[46]  Kris Popat,et al.  Robust quantization of memoryless sources using dispersive FIR filters , 1992, IEEE Trans. Commun..

[47]  D.C. Cox,et al.  Universal digital portable radio communications , 1987, Proceedings of the IEEE.

[48]  Adrian Segall Bit allocation and encoding for vector sources , 1976, IEEE Trans. Inf. Theory.

[49]  Peter F. Swaszek,et al.  A vector quantizer for the Laplace source , 1991, IEEE Trans. Inf. Theory.

[50]  Jennifer Seberry,et al.  Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .