Spectrally selective ultra-high temperature ceramic absorbers for high-temperature solar plants

Ultra-high temperature ceramics are the ideal materials for extreme conditions owing to their very high melting points and good thermo-mechanical properties at high temperatures. For these reasons, they are widely known as materials for aerospace applications. This paper presents a comparative spectral characterization of zirconium, hafnium, and tantalum carbides ultra-high temperature ceramics for concentrating solar power applications. Room-temperature reflectance spectra have been measured from the ultraviolet wavelength region to the mid-infrared band. Using these spectral properties, the ceramics were evaluated as sunlight absorbers in receivers for high-temperature thermodynamic solar plants.

[2]  Raffaele Borrelli,et al.  Catalytic and Radiative Behaviors of ZrB2-SiC Ultrahigh Temperature Ceramic Composites , 2006 .

[3]  C. Fong,et al.  Band structures and optical properties of two transition-metal carbides—TiC and ZrC , 1975 .

[4]  T. Lyon,et al.  CARBONIZATION OF PLASTICS AND REFRACTORY MATERIAL RESEARCH. VOLUME II. REFRACTORY MATERIALS , 1962 .

[5]  D. L. Stierwalt,et al.  Infrared spectral emittance measurements of optical materials. , 1966, Applied optics.

[6]  C. Lampert Advanced optical materials for energy efficiency and solar conversion , 1987 .

[7]  D. Sciti,et al.  Effects of additives on densification, microstructure and properties of liquid-phase sintered silicon carbide , 2000 .

[8]  S. Dutta Densification and Properties of α‐Silicon Carbide , 1985 .

[9]  R. Pitz-Paal,et al.  Two novel high-porosity materials as volumetric receivers for concentrated solar radiation , 2004 .

[10]  Allison,et al.  Optical and electrical properties of single-crystalline zirconium carbide. , 1985, Physical review. B, Condensed matter.

[11]  Rosario Borrelli,et al.  Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle , 2009 .

[12]  J. C. Richmond,et al.  Measurement of Thermal Radiation Properties of Solids , 1963 .

[13]  Manuel Romero,et al.  An Update on Solar Central Receiver Systems, Projects, and Technologies , 2002 .

[14]  Björn Karlsson,et al.  Optical constants and spectral selectivity of titanium carbonitrides , 1982 .

[15]  Yaman Yener,et al.  Solar energy utilization , 1987 .

[16]  L. Roux,et al.  The optical properties of titanium nitrides and carbides: Spectral selectivity and photothermal conversion of solar energy , 1982 .

[17]  J. Robert,et al.  Physico-chemical behavior of carbon materials under high temperature and ion irradiation , 2001 .

[18]  Elisa Sani,et al.  Ultra-refractory ceramics for high-temperature solar absorbers , 2011 .

[19]  R Ruud Metselaar,et al.  Light scattering by pores in polycrystalline materials: Transmission properties of alumina , 1974 .

[20]  D. Sciti,et al.  Microstructure and properties of pressureless sintered ZrC-based materials , 2008 .

[21]  Marianne Balat-Pichelin,et al.  Emissivity measurements on carbon–carbon composites at high temperature under high vacuum , 2006 .

[22]  Wenhua Yu,et al.  Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements , 2008 .

[23]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[24]  J. Robert,et al.  Concentrated Solar Energy as a Diagnostic Tool to Study Materials Under Extreme Conditions , 2002 .

[25]  Manuel Romero,et al.  Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation , 2007 .

[26]  E. Sani,et al.  Hafnium and tantalum carbides for high temperature solar receivers , 2011 .

[27]  K. Luthra Some New Perspectives on Oxidation of Silicon Carbide and Silicon Nitride , 1991 .

[28]  D. Alfano,et al.  Emissivity and catalycity measurements on SiC-coated carbon fibre reinforced silicon carbide composite , 2009 .

[29]  C. Kennedy Review of Mid- to High-Temperature Solar Selective Absorber Materials , 2002 .

[30]  D. Sciti,et al.  Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi_2 or MoSi_2 , 2009 .

[31]  Determination of the emissivity of materials , 1962 .

[32]  Guido E. Guazzoni,et al.  High-Temperature Spectral Emittance of Oxides of Erbium, Samarium, Neodymium and Ytterbium , 1972 .

[33]  B. O. Seraphin,et al.  Optical properties of CVD-coated TiN, ZrN and HfN , 1982 .

[34]  M. Balat-Pichelin,et al.  Structural modifications of carbon–carbon composites under high temperature and ion irradiation , 2005 .

[35]  M. Nygren,et al.  Spark plasma sintering and mechanical behaviour of ZrC-based composites , 2008 .

[36]  J. Spitz Selective surfaces for high temperature solar photothermal conversion , 1977 .

[37]  Yitung Chen,et al.  Review of study on solid particle solar receivers , 2010 .

[38]  Jean-Louis Sans,et al.  Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics , 2008 .

[39]  A. Bonnot,et al.  Reflectivity of ScNx thin films: Comparison with TiNx, TiNxCy and ZrNx coatings and application to the photothermal conversion of solar energy , 1985 .

[40]  E. Sani,et al.  Carbon nanohorns-based nanofluids as direct sunlight absorbers. , 2010, Optics express.

[41]  D. Sciti,et al.  High‐Density Pressureless‐Sintered HfC‐Based Composites , 2006 .

[42]  Walter Bogaerts,et al.  Materials for photothermal solar energy conversion , 1983 .

[43]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[44]  R. W. Major,et al.  Optical properties of tantalum carbide from the infrared to the near ultraviolet , 1984 .

[45]  K. Sandhage,et al.  Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method , 2004 .

[46]  R. Savino,et al.  Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions , 2007 .

[47]  L. Toth Transition Metal Carbides and Nitrides , 1971 .