Persistent ice cloud in the midsummer upper mesosphere at high latitudes: Three‐dimensional modeling and cloud interactions with ambient water vapor

[1] We infer from the observed occurrence frequency of polar mesosphere summer echoes and from the three-dimensional (3-D) modeling of conditions in the high-latitude mesopause region that a persistent layer of icy particles exists in midsummer at all latitudes poleward of about 60°N at and a few kilometers below the mesopause. All of these icy particles are transported equatorward by the climatological mean winds. At the same time, many of the larger icy particles possess a high enough sedimentation velocity to induce a net downward transport of water vapor. Both types of particle motions cause the mesopause region to become substantially dryer than without these transports of icy particles. We follow the interactions between water vapor and icy particles by means of a 3-D dynamical and chemical model, which includes a module for the formation, growth, and sublimation of icy particles. For midsummer conditions and poleward of 67°N latitude, the model predicts (1) a strongly dehydrated region, typically above 84 km, in which the water vapor mixing ratio can fall below 0.2 ppmv and (2) atmospheric regions with enhanced water vapor abundance near both the lower and the equatorward borders of the icy particle layer.

[1]  J. Bremer,et al.  Simultaneous and common‐volume observations of noctilucent clouds and polar mesosphere summer echoes , 1999 .

[2]  W. Swider,et al.  A study of the nighttime D region during a PCA event , 1975 .

[3]  C. Y. She,et al.  Concept of a two‐level mesopause: Support through new lidar observations , 1998 .

[4]  A. Ebel,et al.  A THREE-DIMENSIONAL DYNAMIC MODEL OF THE MINOR CONSTITUENTS OF THE MESOSPHERE , 1998 .

[5]  J. Holtet,et al.  Dynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere , 1977 .

[6]  G. Reid Ice particles and electron “bite‐outs” at the summer polar mesopause , 1990 .

[7]  Gary E. Thomas,et al.  Solar Mesosphere Explorer measurements of polar mesospheric clouds (noctilucent clouds) , 1984 .

[8]  M. Mlynczak,et al.  A detailed evaluation of the heating efficiency in the middle atmosphere , 1993 .

[9]  O. Havnes,et al.  Charged dust in the Earth's middle atmosphere , 2001 .

[10]  U. Zahn,et al.  The two-level structure of the mesopause: A model study , 1999 .

[11]  U. Zahn,et al.  Icy particles in the summer mesopause region: Three-dimensional modeling of their environment and two-dimensional modeling of their transport , 2002 .

[12]  G. R. Sonnemann,et al.  Global three-dimensional modeling of the water vapor concentration of the mesosphere-mesopause region and implications with respect to the noctilucent cloud region , 2001 .

[13]  John Y. N. Cho,et al.  An updated review of polar mesosphere summer echoes: Observation, theory, and their relationship to noctilucent clouds and subvisible aerosols , 1997 .

[14]  O. Havnes,et al.  Size dependence of the mesospheric dust temperature and its influence on the noctilucent clouds and polar mesosphere summer echo phenomena , 2001 .

[15]  M. Rapp,et al.  Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes , 1998 .

[16]  J. Bremer,et al.  Seasonal and long‐term variations of PMSE from VHF radar observations at Andenes, Norway , 2003 .

[17]  J. Thayer,et al.  Noctilucent clouds and wave dynamics: Observations at Sondrestrom, Greenland , 1998 .

[18]  J. Fiedler,et al.  Size distributions of NLC particles as determined from 3‐color observations of NLC by ground‐based lidar , 1999 .

[19]  U. Zahn,et al.  Mesopause temperatures in polar summer , 1989 .

[20]  G. Thomas,et al.  Charging of mesospheric particles - Implications for electron density and particle coagulation , 1991 .

[21]  P. Crutzen,et al.  On the chemistry of H2O H2 and meteoritic ions in the mesosphere and lower thermosphere , 1982 .

[22]  L. I. Næsheim,et al.  First detection of charged dust particles in the Earth's mesosphere , 1996 .

[23]  D. Siskind,et al.  Surface recombination of O and H2 on meteoric dust as a source of mesospheric water vapor , 1999 .

[24]  F. Lübken,et al.  Noctilucent clouds and the thermal structure near the Arctic mesopause in summer , 1996 .

[25]  G. Thomas,et al.  Numerical simulations of the effects of gravity waves on noctilucent clouds , 1994 .

[26]  M. Rapp,et al.  PMSE dependence on aerosol charge number density and aerosol size , 2003 .

[27]  G. Reid Ice Clouds at the Summer Polar Mesopause , 1975 .

[28]  G. Thomas,et al.  A growth‐sedimentation model of polar mesospheric clouds: Comparison with SME measurements , 1988 .

[29]  V. G. Kazakov,et al.  Laboratory and in situ evidence for the presence of ice particles in a PMSE region , 1997 .

[30]  Peter Hoffmann,et al.  Properties of midlatitude mesosphere summer echoes after three seasons of VHF radar observations at 54°N , 2003 .

[31]  G. Baumgarten,et al.  Noctilucent clouds above ALOMAR between 1997 and 2001: Occurrence and properties , 2003 .

[32]  M. Gerding,et al.  NLC particle properties from a five‐color lidar observation at 54°N , 2000 .

[33]  F. Lübken,et al.  Evidence for ice clouds causing polar mesospheric summer echoes , 1994 .

[34]  C. Fricke-Begemann,et al.  The potassium density and temperature structure in the mesopause region (80–105 km) at a low latitude (28°N) , 2002 .

[35]  S. Fukao,et al.  Oscillations in polar mesospheric summer echoes and bifurcation of noctilucent cloud formation , 1996 .

[36]  F. Lübken,et al.  First in situ temperature measurements in the summer mesosphere at very high latitudes (78°N) , 2003 .

[37]  D. Siskind,et al.  Influences of ice particles on the ion chemistry of the polar summer mesosphere , 2003 .

[38]  J. Blamont,et al.  Noctilucent clouds in daytime - Circumpolar particulate layers near the summer mesopause. , 1972 .

[39]  R. Turco,et al.  Noctilucent clouds: Simulation studies of their genesis, properties and global influences , 1982 .

[40]  R. R. Conway,et al.  Discovery of a water vapor layer in the Arctic summer mesosphere: Implications for polar mesospheric clouds , 2001 .

[41]  E. Kopp Hydrogen constituents of the mesosphere inferred from positive ions: H2O, CH4, H2CO, H2O2, and HCN , 1990 .

[42]  J. Klostermeyer The effect of ice particles on Thomson scattering from the polar summer mesopause region , 1994 .

[43]  E. Kopp Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement , 1984 .

[44]  G. Brasseur,et al.  Numerical simulation of the seasonal variation of mesospheric water vapor , 1991 .

[45]  C. Meng,et al.  Altitudes of polar mesospheric clouds observed by a middle ultraviolet imager , 1999 .

[46]  G. Reid Ion chemistry of the cold summer mesopause region , 1989 .

[47]  Gary E. Thomas,et al.  Small‐scale temperature variations in the vicinity of NLC: Experimental and model results , 2001 .

[48]  Richard P. Turco,et al.  Smoke and Dust Particles of Meteoric Origin in the Mesosphere and Stratosphere , 1980 .