Simulation of electrical tree growth in solid

Contents In this paper the electrical tree growth in solid insulating materials is modeled using yon Neumann's Cellular Automata (CA). The model is based upon the assumption that the electric stress at the end of a conducting tip quite often approaches the dielectric strength of the material and that progressive breakdown can occur by electrical tree formation. Because of tree advancement, the potential distribution into the insulating material changes with time and is calculated at each time step. An algorithm for the simulation of electrical tree growth in solid dielectrics based on this model has been developed. The algorithm is also used to simulate breakdown in solid dielectrics containing square or spherical voids. Simulation des Wachstums elektrischer Bi~ume in Festisolierstoffen 0bersicht In diesem Artikel wird das Wachstum der elektrischen B~iume in Festisolierstoffen mittels von Neumannscher zellularer Automaten modelliert. Dieses Modell geht davon aus, daft das elektrische Feld an der Spitze der Elektrode oft in der N~ihe der dielektrischen Festigkeit vom Material liegt und das ein fortschreitender Durchschlag durch elektrische B~iume m6glich ist. Durch das Wachsen der elektrischen B~iume ~indert sich die Spannungsverteilung innerhalb des Festisolierstoffes mit der Zeit und wird in jedem Zeitschritt berechnet. Ein Algorithmus ffir die Simulation des Wachstums eines elektrischen Baums in Festisolierstoffen ist entwickelt worden. Der Algorithmus kann auch den Durchschlag in Festisolierstoffen mit zylindrischen oder kugelf6rmigen Hohlr~iumen simulieren.

[1]  H. Fröhlich,et al.  On the theory of dielectric breakdown in solids , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. Tanaka,et al.  A Study of the Gaseous Degradation Products of Corona-Exposed Polyethylene , 1982, IEEE Transactions on Electrical Insulation.

[3]  K. Stark,et al.  Electric Strength of Irradiated Polythene , 1955, Nature.

[4]  A. von Hippel,et al.  Electric Breakdown of Solid and Liquid Insulators , 1937 .

[5]  T. Yoshimitsu,et al.  Electrical Failure Properties of Cast Epoxy Resins , 1981, IEEE Transactions on Electrical Insulation.

[6]  E.T.L. Omtzigt,et al.  Computational spacetimes , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[7]  L. A. Dissado,et al.  Electrical tree propagation: from stochastic models to a quantitative physical description , 1995, Proceedings of 1995 IEEE 5th International Conference on Conduction and Breakdown in Solid Dielectrics.

[8]  O. Dorlanne,et al.  Thermally Stimulated Discharge of Polyethylene Following Ac Stressing , 1982, IEEE Transactions on Electrical Insulation.

[9]  Ioannis G. Karafyllidis,et al.  Simulation of two-dimensional photoresist etching process in integrated circuit fabrication using cellular automata , 1995 .

[10]  Ioannis Andreadis,et al.  A new hardware module for automated visual inspection based on a cellular automaton architecture , 1996, J. Intell. Robotic Syst..

[11]  Frederick Seitz,et al.  On the Theory of Electron Multiplication in Crystals , 1949 .

[12]  J. H. Mason Breakdown of insulation by discharges , 1953 .

[13]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[14]  N. Klein,et al.  Electrical breakdown mechanisms in thin insulators , 1978 .

[15]  T. Okamoto,et al.  Aging and related phenomena in modern electric power systems , 1993 .

[16]  L. A. Dissado,et al.  Physical origin for differences in electrical tree structures , 1994, Proceedings of IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP'94).

[17]  A. M. Bruning,et al.  Analysis of electrical insulator surfaces by X-ray photoelectron spectroscopy , 1995, IEEE Transactions on Dielectrics and Electrical Insulation.

[18]  R. Bartnikas,et al.  On the character of different forms of partial discharge and their related terminologies , 1993 .

[19]  Tommaso Toffoli,et al.  CAM: A high-performance cellular-automaton machine , 1984 .

[20]  D. J. Groves,et al.  Treeing in mechanically strained h.v.-cable polymers using conducting polymer electrodes , 1974 .

[21]  Panagiotis Tzionas,et al.  A cellular automaton for the determination of the mean velocity of moving objects and its VLSI implementation , 1996, Pattern Recognit..

[22]  Michael G. Danikas,et al.  Streamer propagation over a liquid/solid interface , 1994 .

[23]  R. Feynman Simulating physics with computers , 1999 .

[24]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[25]  Masayuki Ieda,et al.  Dielectric Breakdown Process of Polymers , 1980, IEEE Transactions on Electrical Insulation.

[26]  F. Kreuger,et al.  Industrial high voltage , 1991 .

[27]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[28]  Bernard P. Zeigler,et al.  Discrete event models for cell space simulation , 1982 .

[29]  G. Vichniac Simulating physics with cellular automata , 1984 .

[30]  H. Fröhlich,et al.  Theory of Electrical Breakdown in Ionic Crystals , 1937 .

[31]  Rainer Patsch,et al.  Electrical and water treeing: a chairman's view , 1992 .

[32]  T. Watanabe,et al.  Current Pulses Caused by Electrical Tree Development , 1981, IEEE Transactions on Electrical Insulation.

[33]  J. R. Perkins,et al.  Evaluation of Polyolefin High-Voltage Insulating Compounds; Dendrite (Tree) Formation Under Highly Divergent Fields , 1964 .

[34]  Paul Budenstein,et al.  On the Mechanism of Dielectric Breakdown of Solids , 1980, IEEE Transactions on Electrical Insulation.

[35]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[36]  E. Favrie,et al.  Influence of surface and internal defects on polyethylene electrical routine test on VHV cables , 1977, IEEE Transactions on Power Apparatus and Systems.

[37]  L. Watson,et al.  Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .

[38]  N. Klein,et al.  Electrical breakdown of insulators by one‐carrier impact ionization , 1982 .

[39]  D. J. Matzke,et al.  Impact of locality and dimensionality limits on architectural trends , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[40]  Ken A. Hawick,et al.  Scientific modeling with massively parallel SIMD computers , 1991, Proc. IEEE.

[41]  P.H.F. Morshuis,et al.  Assessment of dielectric degradation by ultrawide-band PD detection , 1995 .

[42]  Ioannis G. Karafyllidis,et al.  Simulation of the image reversal submicron process in integrated circuit fabrication , 1996 .

[43]  C. Mayoux,et al.  Electrical Breakdown Due to Discharges in Different Types of Insulation , 1981, IEEE Transactions on Electrical Insulation.

[44]  J. O'dwyer,et al.  Breakdown in Solid Dielectrics , 1982, IEEE Transactions on Electrical Insulation.

[45]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[46]  J. H. Mason The deterioration and breakdown of dielectrics resulting from internal discharges , 1951 .

[47]  M. Gerhardt,et al.  A cellular automaton describing the formation of spatially ordered structures in chemical systems , 1989 .