Global multiquadric collocation method for groundwater contaminant source identification

In this paper, a radial basis collocation method (RBCM) based on the global space-time multiquadric (GST-MQ) is developed to solve the inverse problem of groundwater contaminant source identification. This deterministic method directly induces the problem to a single-step solution of a system of linear algebraic equations in the entire space-time domain. The least-square-based radial basis collocation method (LS-RBCM) is introduced to overcome the ill-posedness of the linear system. To increase confidence in the GST-MQ solutions, the sensitivity analysis with respect to calculation parameters, observation data and model uncertainty is investigated. The performance of the application examples of contaminant source identification in one- and two-dimensional porous media demonstrates that the proposed method poses the meshfree advantage and direct identification of contaminant source with efficient methodology. The GST-MQ method provides a robust tool for estimating spatial plume distribution as well as the release history of groundwater contaminant source from concentration measurements.

[1]  Xian-Zhong Mao,et al.  Least‐square‐based radial basis collocation method for solving inverse problems of Laplace equation from noisy data , 2010 .

[2]  M. Golberg,et al.  Improved multiquadric approximation for partial differential equations , 1996 .

[3]  W. Durner Transfer Functions and Solute Movement through Soil , 1992 .

[4]  Gareth Edwards-Jones,et al.  Ground water vulnerability assessment. Predicting relative contamination potential under conditions of uncertainty: National Research Council. National Academy Press, 1993. 204 pp. Price US$ 34.95, US$ 42.00 export (hardback). ISBN 0 309 04799 4 , 1996 .

[5]  P. Kitanidis,et al.  A geostatistical approach to contaminant source identification , 1997 .

[6]  Y. Hon,et al.  A numerical computation for inverse boundary determination problem , 2000 .

[7]  Ching-Shyang Chen,et al.  A numerical method for heat transfer problems using collocation and radial basis functions , 1998 .

[8]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[9]  A. Cheng,et al.  Direct solution of ill‐posed boundary value problems by radial basis function collocation method , 2005 .

[10]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[11]  T. Ulrych,et al.  Minimum Relative Entropy Inversion: Theory and Application to Recovering the Release History of a Groundwater Contaminant , 1996 .

[12]  Gui-Rong Liu,et al.  A least-square radial point collocation method for adaptive analysis in linear elasticity , 2008 .

[13]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[14]  A. Cheng,et al.  A comparison of efficiency and error convergence of multiquadric collocation method and finite element method , 2003 .

[15]  Mustafa M. Aral,et al.  Identification of Contaminant Source Location and Release History in Aquifers , 2001 .

[16]  T. Skaggs,et al.  Recovering the release history of a groundwater contaminant , 1994 .

[17]  T. Skaggs,et al.  Recovering the History of a Groundwater Contaminant Plume: Method of Quasi‐Reversibility , 1995 .

[18]  Kwok Fai Cheung,et al.  Multiquadric Solution for Shallow Water Equations , 1999 .

[19]  A. Bagtzoglou,et al.  Application of particle methods to reliable identification of groundwater pollution sources , 1992 .

[20]  A. Michalak,et al.  A geostatistical framework for incorporating transport information in estimating the distribution of a groundwater contaminant plume , 2005 .

[21]  Robert Schaback,et al.  On convergent numerical algorithms for unsymmetric collocation , 2009, Adv. Comput. Math..

[22]  Fue-Sang Lien,et al.  Information-driven receptor placement for contaminant source determination , 2010, Environ. Model. Softw..

[23]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[24]  R. E. Carlson,et al.  Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .

[25]  Amvrossios C. Bagtzoglou,et al.  Pollution source identification in heterogeneous porous media , 2001 .

[26]  Brian J. Wagner,et al.  Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling , 1992 .

[27]  P. Kitanidis,et al.  Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling , 2004 .

[28]  Ashu Jain,et al.  Identification of Unknown Groundwater Pollution Sources Using Artificial Neural Networks , 2004 .

[29]  Sergey Golosov,et al.  A parameterized model of heat storage by lake sediments , 2010, Environ. Model. Softw..

[30]  Cheng-Hung Huang,et al.  An inverse problem in estimating the strength of contaminant source for groundwater systems , 2008 .

[31]  P AlejandroPeña,et al.  Computational evolutionary inverse lagrangian puff model , 2010, Environ. Model. Softw..

[32]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[33]  Lachlan T. H. Newham,et al.  A framework for estimating pollutant export coefficients from long-term in-stream water quality monitoring data , 2008, Environ. Model. Softw..

[34]  J. A. Rodríguez,et al.  SIPAR_ID: Freeware for surface irrigation parameter identification , 2010, Environ. Model. Softw..

[35]  Bithin Datta,et al.  Optimal Monitoring Network and Ground-Water–Pollution Source Identification , 1997 .

[36]  X. Mao,et al.  Global space–time multiquadric method for inverse heat conduction problem , 2011 .

[37]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .