Projection results for the -partition problem

The k-partition problem is an NP-hard combinatorial optimisation problem with many applications. Chopra and Rao introduced two integer programming formulations of this problem, one having both node and edge variables, and the other having only edge variables. We show that, if we take the polytopes associated with the ‘edge-only’ formulation, and project them into a suitable subspace, we obtain the polytopes associated with the ‘node-and-edge’ formulation. This result enables us to derive new valid inequalities and separation algorithms, and also to shed new light on certain SDP relaxations. Computational results are also presented.

[1]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[2]  Martin Grötschel,et al.  Complete Descriptions of Small Multicut Polytopes , 1990, Applied Geometry And Discrete Mathematics.

[3]  Miguel F. Anjos,et al.  A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..

[4]  R. Sotirov,et al.  New bounds for the max-k-cut and chromatic number of a graph , 2015, 1503.06595.

[5]  M. R. Rao,et al.  Facets of the K-partition Polytope , 1995, Discret. Appl. Math..

[6]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[7]  Marc E. Pfetsch,et al.  Orbitopal Fixing , 2007, IPCO.

[8]  Sunil Chopra,et al.  The Graph Partitioning Polytope on Series-Parallel and4-Wheel Free Graphs , 1994, SIAM J. Discret. Math..

[9]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[10]  Andreas Eisenblätter,et al.  The Semidefinite Relaxation of the k -Partition Polytope Is Strong , 2002, IPCO.

[11]  Miguel F. Anjos,et al.  Solving k -way Graph Partitioning Problems to Optimality: The Impact of Semidefinite Relaxations and the Bundle Method , 2013 .

[12]  Ralf Borndörfer,et al.  Set packing relaxations of some integer programs , 2000, Math. Program..

[13]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[14]  M. Grötschel,et al.  Composition of Facets of the Clique Partitioning Polytope , 1990 .

[15]  Rudolf Müller,et al.  Working Paper Transitive Packing : A i Unifying Concept in Optimization Combinatorial by A . , 2002 .

[16]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[17]  Franz Rendl,et al.  Semidefinite relaxations for partitioning, assignment and ordering problems , 2012, 4OR.

[18]  George L. Nemhauser,et al.  Scheduling to Minimize Interaction Cost , 1966, Oper. Res..

[19]  Ali Ridha Mahjoub,et al.  On the cut polytope , 1986, Math. Program..

[20]  Frits C. R. Spieksma,et al.  The clique partitioning problem: Facets and patching facets , 2001, Networks.

[21]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[22]  Bert Gerards Testing the Odd Bicycle Wheel Inequalities for the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..

[23]  Michael Malmros Sørensen,et al.  A Note on Clique-Web Facets for Multicut Polytopes , 2002, Math. Oper. Res..

[24]  Adam N. Letchford,et al.  Binary positive semidefinite matrices and associated integer polytopes , 2008, Math. Program..

[25]  D. V. Pasechnik,et al.  On approximate graph colouring and MAX-k-CUT algorithms based on the theta-function , 2002 .

[26]  Monique Laurent,et al.  Gap Inequalities for the Cut Polytope , 1996, Eur. J. Comb..

[27]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[28]  Frits C. R. Spieksma,et al.  Lifting theorems and facet characterization for a class of clique partitioning inequalities , 1999, Oper. Res. Lett..

[29]  A. Eisenblätter Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds , 2001 .

[30]  Sébastien Le Digabel,et al.  Computational study of valid inequalities for the maximum k-cut problem , 2016, Ann. Oper. Res..

[31]  Alan M. Frieze,et al.  Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.

[32]  Renata Sotirov,et al.  An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem , 2014, INFORMS J. Comput..

[33]  Martin Grötschel,et al.  Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..

[34]  Adam N. Letchford On Disjunctive Cuts for Combinatorial Optimization , 2001, J. Comb. Optim..