Projection results for the -partition problem
暂无分享,去创建一个
[1] Matteo Fischetti,et al. {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..
[2] Martin Grötschel,et al. Complete Descriptions of Small Multicut Polytopes , 1990, Applied Geometry And Discrete Mathematics.
[3] Miguel F. Anjos,et al. A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem , 2011, Ann. Oper. Res..
[4] R. Sotirov,et al. New bounds for the max-k-cut and chromatic number of a graph , 2015, 1503.06595.
[5] M. R. Rao,et al. Facets of the K-partition Polytope , 1995, Discret. Appl. Math..
[6] Gábor Csárdi,et al. The igraph software package for complex network research , 2006 .
[7] Marc E. Pfetsch,et al. Orbitopal Fixing , 2007, IPCO.
[8] Sunil Chopra,et al. The Graph Partitioning Polytope on Series-Parallel and4-Wheel Free Graphs , 1994, SIAM J. Discret. Math..
[9] Yoshiko Wakabayashi,et al. A cutting plane algorithm for a clustering problem , 1989, Math. Program..
[10] Andreas Eisenblätter,et al. The Semidefinite Relaxation of the k -Partition Polytope Is Strong , 2002, IPCO.
[11] Miguel F. Anjos,et al. Solving k -way Graph Partitioning Problems to Optimality: The Impact of Semidefinite Relaxations and the Bundle Method , 2013 .
[12] Ralf Borndörfer,et al. Set packing relaxations of some integer programs , 2000, Math. Program..
[13] Martin Grötschel,et al. Facets of the clique partitioning polytope , 1990, Math. Program..
[14] M. Grötschel,et al. Composition of Facets of the Clique Partitioning Polytope , 1990 .
[15] Rudolf Müller,et al. Working Paper Transitive Packing : A i Unifying Concept in Optimization Combinatorial by A . , 2002 .
[16] M. R. Rao,et al. The partition problem , 1993, Math. Program..
[17] Franz Rendl,et al. Semidefinite relaxations for partitioning, assignment and ordering problems , 2012, 4OR.
[18] George L. Nemhauser,et al. Scheduling to Minimize Interaction Cost , 1966, Oper. Res..
[19] Ali Ridha Mahjoub,et al. On the cut polytope , 1986, Math. Program..
[20] Frits C. R. Spieksma,et al. The clique partitioning problem: Facets and patching facets , 2001, Networks.
[21] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[22] Bert Gerards. Testing the Odd Bicycle Wheel Inequalities for the Bipartite Subgraph Polytope , 1985, Math. Oper. Res..
[23] Michael Malmros Sørensen,et al. A Note on Clique-Web Facets for Multicut Polytopes , 2002, Math. Oper. Res..
[24] Adam N. Letchford,et al. Binary positive semidefinite matrices and associated integer polytopes , 2008, Math. Program..
[25] D. V. Pasechnik,et al. On approximate graph colouring and MAX-k-CUT algorithms based on the theta-function , 2002 .
[26] Monique Laurent,et al. Gap Inequalities for the Cut Polytope , 1996, Eur. J. Comb..
[27] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[28] Frits C. R. Spieksma,et al. Lifting theorems and facet characterization for a class of clique partitioning inequalities , 1999, Oper. Res. Lett..
[29] A. Eisenblätter. Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds , 2001 .
[30] Sébastien Le Digabel,et al. Computational study of valid inequalities for the maximum k-cut problem , 2016, Ann. Oper. Res..
[31] Alan M. Frieze,et al. Improved approximation algorithms for MAXk-CUT and MAX BISECTION , 1995, Algorithmica.
[32] Renata Sotirov,et al. An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem , 2014, INFORMS J. Comput..
[33] Martin Grötschel,et al. Clique-Web Facets for Multicut Polytopes , 1992, Math. Oper. Res..
[34] Adam N. Letchford. On Disjunctive Cuts for Combinatorial Optimization , 2001, J. Comb. Optim..