The l-th power Diffie–Hellman problem and the l-th root Diffie–Hellman problem
暂无分享,去创建一个
[1] Hovav Shacham,et al. Short Group Signatures , 2004, CRYPTO.
[2] Masahiro Mambo,et al. Complexity Analysis of the Cryptographic Primitive Problems through Square-Root Exponent , 2004 .
[3] Jennifer Seberry,et al. Equitable Key Escrow with Limited Time Span (or, How to Enforce Time Expiration Cryptographically) , 1998, ASIACRYPT.
[4] Dan Boneh,et al. Short Signatures Without Random Oracles and the SDH Assumption in Bilinear Groups , 2008, Journal of Cryptology.
[5] Whitfield Diffie,et al. New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.
[6] Jan Camenisch,et al. Signature Schemes and Anonymous Credentials from Bilinear Maps , 2004, CRYPTO.
[7] David Chaum,et al. Group Signatures , 1991, EUROCRYPT.
[8] M. Kasahara,et al. A New Traitor Tracing , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[9] Taher ElGamal,et al. A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .
[10] Jan Camenisch,et al. Efficient Group Signature Schemes for Large Groups (Extended Abstract) , 1997, CRYPTO.
[11] Eike Kiltz,et al. A Tool Box of Cryptographic Functions Related to the Diffie-Hellman Function , 2001, INDOCRYPT.
[12] Dongyoung Roh,et al. The square root Diffie–Hellman problem , 2012, Des. Codes Cryptogr..
[13] Ueli Maurer,et al. Diffie-Hellman Oracles , 1996, CRYPTO.
[14] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[15] Gary L. Miller,et al. On taking roots in finite fields , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[16] Hovav Shacham,et al. Short Signatures from the Weil Pairing , 2001, J. Cryptol..