Effects of magnetization on fusion product trapping and secondary neutron spectraa)

By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

[1]  J. Gillis,et al.  Classical dynamics of particles and systems , 1965 .

[2]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[3]  A. Farnsworth,et al.  High-gain, low-intensity ICF targets for a charged-particle beam fusion driver , 1981 .

[4]  I. Lindemuth,et al.  Parameter space for magnetized fuel targets in inertial confinement fusion , 1983 .

[5]  Hiroshi Azechi,et al.  Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions , 1986 .

[6]  Murakami,et al.  Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion. , 1986, Physical review letters.

[7]  S. P. Hatchett,et al.  Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers , 1987 .

[8]  R. Petrasso,et al.  Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.

[9]  D. Morgan,et al.  Compression of Plasma to Megabar Range using Imploding Liner , 1999 .

[10]  M. M. Basko,et al.  Ignition conditions for magnetized target fusion in cylindrical geometry , 2000 .

[11]  J. Meyer-ter-Vehn,et al.  Ignition conditions for magnetically insulated tamped ICF targets in cylindrical geometry , 2001 .

[12]  J. Meyer-ter-Vehn,et al.  Implosion and ignition of magnetized cylindrical targets driven by heavy-ion beams , 2003 .

[13]  R. G. Adams,et al.  Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .

[14]  Peter A. Amendt,et al.  Using nuclear data and Monte Carlo techniques to study areal density and mix in D2 implosions , 2005 .

[15]  F. J. Marshall,et al.  Proton Radiography of Inertial Fusion Implosions , 2008, Science.

[16]  J. R. Rygg,et al.  Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. , 2007, Physical review letters.

[17]  D. McDaniel,et al.  Overview and Status of the Upgraded Z Pulsed Power Driver , 2008, 2008 IEEE International Power Modulators and High-Voltage Conference.

[18]  J. D. Kilkenny,et al.  Charged-Particle Probing of X-ray–Driven Inertial-Fusion Implosions , 2010, Science.

[19]  S. Slutz,et al.  Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field , 2010 .

[20]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[21]  P. Chang,et al.  Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser , 2012 .

[22]  R. Mcbride,et al.  Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories , 2012, IEEE Transactions on Plasma Science.

[23]  S. Slutz,et al.  High-gain magnetized inertial fusion. , 2012, Physical review letters.

[24]  P. Knapp,et al.  Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra , 2013 .

[25]  P. Schmit,et al.  Tail-ion transport and Knudsen layer formation in the presence of magnetic fields. , 2013 .

[26]  R. Mcbride,et al.  Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. , 2014, Physical review letters.

[27]  R. Mcbride,et al.  Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa) , 2014 .

[28]  R. Mcbride,et al.  Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility. , 2014, The Review of scientific instruments.

[29]  R. Mcbride,et al.  Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion. , 2014, Physical review letters.

[30]  B. Blue,et al.  Diagnosing magnetized liner inertial fusion experiments on Za) , 2014 .

[31]  S. Slutz,et al.  Design of magnetized liner inertial fusion experiments using the Z facilitya) , 2014 .

[32]  R. Mcbride,et al.  A semi-analytic model of magnetized liner inertial fusion , 2015, 1502.05469.