A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions
暂无分享,去创建一个
[1] R. Sakai,et al. Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.
[2] E. Saff,et al. Logarithmic Potentials with External Fields , 1997 .
[3] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[4] Akil C. Narayan,et al. Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..
[5] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[6] C. Schwab,et al. Sparse high order FEM for elliptic sPDEs , 2009 .
[7] Yuhang Chen,et al. Stochastic collocation methods via $L_1$ minimization using randomized quadratures , 2016, 1602.00995.
[8] H. Rauhut. Compressive Sensing and Structured Random Matrices , 2009 .
[9] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[10] Fabio Nobile,et al. Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..
[11] Tamás Erdélyi,et al. Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .
[12] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[13] Doron S. Lubinsky,et al. Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d) , 2005, J. Approx. Theory.
[14] Len Bos,et al. An Orthogonality Property of the Legendre Polynomials , 2015 .
[15] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[16] Gary Tang,et al. Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.
[17] D. Xiu,et al. STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .
[18] Gregery T. Buzzard,et al. Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..
[19] Robert Berman,et al. Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.
[20] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[21] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[22] B. A. Taylor,et al. The complex equilibrium measure of a symmetric convex set in ⁿ , 1986 .
[23] Holger Rauhut,et al. Compressive Sensing with structured random matrices , 2012 .
[24] Holger Rauhut,et al. Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.
[25] O. Ernst,et al. ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .
[26] Tao Zhou,et al. A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..
[27] Hrushikesh Narhar Mhaskar,et al. Where does the sup norm of a weighted polynomial live? , 1985 .
[28] Bruno Sudret,et al. Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..
[29] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[30] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[31] Michael S. Eldred,et al. Sparse Pseudospectral Approximation Method , 2011, 1109.2936.
[32] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[33] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[34] ERIC BEDFORD,et al. THE COMPLEX EQUILIBRIUM MEASURE OF A SYMMETRIzC CONVEX SET IN Rn , 2009 .
[35] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[36] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[37] Tamás Erdélyi,et al. Generalized Jacobi weights, Christoffel functions, and zeros of orthogonal polynomials , 1992 .
[38] John D. Jakeman,et al. Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates , 2014, J. Comput. Phys..
[39] E. Rakhmanov,et al. ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .
[40] Yuan Xu,et al. Asymptotics of the Christoffel Functions on a Simplex in Rd , 1999 .
[41] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[42] Youssef M. Marzouk,et al. Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..
[43] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[44] Holger Rauhut,et al. A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.
[45] Doron S. Lubinsky,et al. Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d), II , 2006, J. Approx. Theory.
[46] Dongbin Xiu,et al. Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..
[47] Michael Elad,et al. Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.
[48] Alireza Doostan,et al. A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..
[49] Tao Tang,et al. On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..
[50] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[51] Robert Berman. Bergman kernels for weighted polynomials and weighted equilibrium measures of C^n , 2007 .
[52] Khachik Sargsyan,et al. Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..