A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditioned $\ell^1$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. Numerical examples are also provided to demonstrate that our proposed algor...

[1]  R. Sakai,et al.  Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.

[2]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[3]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[4]  Akil C. Narayan,et al.  Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation , 2014, SIAM J. Sci. Comput..

[5]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[6]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[7]  Yuhang Chen,et al.  Stochastic collocation methods via $L_1$ minimization using randomized quadratures , 2016, 1602.00995.

[8]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[9]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[10]  Fabio Nobile,et al.  Approximation of Quantities of Interest in Stochastic PDEs by the Random Discrete L2 Projection on Polynomial Spaces , 2013, SIAM J. Sci. Comput..

[11]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .

[12]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[13]  Doron S. Lubinsky,et al.  Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d) , 2005, J. Approx. Theory.

[14]  Len Bos,et al.  An Orthogonality Property of the Legendre Polynomials , 2015 .

[15]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[16]  Gary Tang,et al.  Subsampled Gauss Quadrature Nodes for Estimating Polynomial Chaos Expansions , 2014, SIAM/ASA J. Uncertain. Quantification.

[17]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[18]  Gregery T. Buzzard,et al.  Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[19]  Robert Berman,et al.  Fekete points and convergence towards equilibrium measures on complex manifolds , 2009, 0907.2820.

[20]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[21]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[22]  B. A. Taylor,et al.  The complex equilibrium measure of a symmetric convex set in ⁿ , 1986 .

[23]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[24]  Holger Rauhut,et al.  Sparse Legendre expansions via l1-minimization , 2012, J. Approx. Theory.

[25]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[26]  Tao Zhou,et al.  A Christoffel function weighted least squares algorithm for collocation approximations , 2014, Math. Comput..

[27]  Hrushikesh Narhar Mhaskar,et al.  Where does the sup norm of a weighted polynomial live? , 1985 .

[28]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[29]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[30]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[31]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[33]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[34]  ERIC BEDFORD,et al.  THE COMPLEX EQUILIBRIUM MEASURE OF A SYMMETRIzC CONVEX SET IN Rn , 2009 .

[35]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[36]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[37]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and zeros of orthogonal polynomials , 1992 .

[38]  John D. Jakeman,et al.  Enhancing adaptive sparse grid approximations and improving refinement strategies using adjoint-based a posteriori error estimates , 2014, J. Comput. Phys..

[39]  E. Rakhmanov,et al.  ON ASYMPTOTIC PROPERTIES OF POLYNOMIALS ORTHOGONAL ON THE REAL AXIS , 1984 .

[40]  Yuan Xu,et al.  Asymptotics of the Christoffel Functions on a Simplex in Rd , 1999 .

[41]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[42]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[43]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[44]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[45]  Doron S. Lubinsky,et al.  Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d), II , 2006, J. Approx. Theory.

[46]  Dongbin Xiu,et al.  Stochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation , 2012, SIAM J. Sci. Comput..

[47]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[48]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[49]  Tao Tang,et al.  On Discrete Least-Squares Projection in Unbounded Domain with Random Evaluations and its Application to Parametric Uncertainty Quantification , 2014, SIAM J. Sci. Comput..

[50]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[51]  Robert Berman Bergman kernels for weighted polynomials and weighted equilibrium measures of C^n , 2007 .

[52]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..