Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials for lithium-ion batteries

Abstract Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials with a typical hexagonal α-NaFeO2 structure were prepared utilizing a co-precipitation method. It is found that the ratio of peak intensities of (003) to (104) observed from X-ray diffraction (XRD) increases with decreasing the Ni content or increasing the Co content. The scanning electron microscopy (SEM) images reveal that the small primary particles are agglomerated to form the secondary ones. As the Mn content increases, the primary and secondary particles become larger and the resulted particle size for the Li[Ni0.6Co0.2Mn0.2]O2 is uniformly distributed in the range of 100–300 nm. Although the initial discharge capacity of the Li/Li[NixCoyMnz]O2 cells reduces with decreasing the Ni content, the cyclic performance and rate capability are improved with higher Mn or Co content. The Li[Ni0.6Co0.2Mn0.2]O2 can deliver excellent cyclability with a capacity retention of 97.1% after 50 cycles.

[1]  T. Chou,et al.  Effect of Co content on performance of LiAl1/3−xCoxNi1/3Mn1/3O2 compounds for lithium-ion batteries , 2006 .

[2]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[3]  T. Ohzuku,et al.  Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries , 2001 .

[4]  Jung-Min Kim,et al.  Role of transition metals in layered Li[Ni, Co, Mn]O2 under electrochemical operation , 2004 .

[5]  P. He,et al.  Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries , 2012 .

[6]  J. D. Robertson,et al.  Lithium Manganese Nickel Oxides Li x ( Mn y Ni1 − y ) 2 − x O 2 I. Synthesis and Characterization of Thin Films and Bulk Phases , 1998 .

[7]  J. Choy,et al.  Evolution of Local Structure around Manganese in Layered LiMnO2 upon Chemical and Electrochemical Delithiation/Relithiation , 2000 .

[8]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[9]  Liquan Chen,et al.  Effect of Co Content on Rate Performance of LiMn0.5 − x Co2x Ni0.5 − x O 2 Cathode Materials for Lithium-Ion Batteries , 2004 .

[10]  Yang‐Kook Sun,et al.  Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation , 2006 .

[11]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[12]  Bernard Simon,et al.  Lithium insertion into host materials: the key to success for Li ion batteries , 1999 .

[13]  J. Duh,et al.  Effect of Mn Content on the Microstructure and Electrochemical Performance of LiNi0.75 − x Co0.25Mn x O2 Cathode Materials , 2005 .

[14]  Gary M. Koenig,et al.  Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials , 2011 .

[15]  Zhaolin Liu,et al.  Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries , 1999 .

[16]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[17]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[18]  Yi-jie Gu,et al.  Structural characterization of layered LiNi0.85−xMnxCo0.15O2 with x = 0, 0.1, 0.2 and 0.4 oxide electrodes for Li batteries , 2011 .

[19]  J. Prakash,et al.  Effects of Metal Ions on the Structural and Thermal Stabilities of Li [ Ni1 − x − y Co x Mn y ] O2 ( x + y ⩽ 0.5 ) Studied by In Situ High Temperature XRD , 2008 .

[20]  P. Prosini,et al.  Improved electrochemical performance of a LiFePO4-based composite cathode , 2001 .

[21]  Faisal M. Alamgir,et al.  Comparative Study of the Capacity and Rate Capability of LiNi y Mn y Co1–2y O2 (y = 0.5, 0.45, 0.4, 0.33) , 2011 .

[22]  Yang‐Kook Sun,et al.  Effect of Manganese Content on the Electrochemical and Thermal Stabilities of Li [ Ni0.58Co0.28 − xMn0.14 + x ] O2 Cathode Materials for Lithium-Ion Batteries , 2010 .

[23]  B. Hwang,et al.  Influence of Mn content on the morphology and electrochemical performance of LiNi1−x−yCoxMnyO2 cathode materials , 2003 .

[24]  Patrick Willmann,et al.  Effect of cobalt substitution on cationic distribution in LiNi1 − y CoyO2 electrode materials , 1996 .

[25]  K. Amine,et al.  Significant Improvement of Electrochemical Performance of AlF3-Coated Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials , 2007 .

[26]  Peter Y. Zavalij,et al.  The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound , 2004 .

[27]  T. Gustafsson,et al.  Effect of manganese on the structural and thermal stability of Li0.3Ni0.7-yCo0.3 −yMn2yO2 electrode materials (y=0 and 0.05) , 2011 .

[28]  Liquan Chen,et al.  Electrochemical Characterization of Positive Electrode Material LiNi1 / 3Co1 / 3Mn1 / 3 O 2 and Compatibility with Electrolyte for Lithium-Ion Batteries , 2004 .

[29]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[30]  Jian Li,et al.  Comparison of Electrochemical Performance of LiNi0.7Co0.15Mn0.15O2 with Different Surface Composition , 2012 .

[31]  Chong Seung Yoon,et al.  A Novel Cathode Material with a Concentration‐Gradient for High‐Energy and Safe Lithium‐Ion Batteries , 2010 .

[32]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiCo_ Ni_ O_2 for Lithium-Ion Batteries , 2001 .

[33]  B. Xia,et al.  Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries , 2005 .

[34]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[35]  Jai Prakash,et al.  Improvement of Electrochemical Performances of Li [ Ni0.8Co0.1Mn0.1 ] O2 Cathode Materials by Fluorine Substitution , 2007 .

[36]  B. Cushing,et al.  Topotactic routes to layered calcium cobalt oxides , 1998 .

[37]  P. Bruce,et al.  New intercalation compounds for lithium batteries: layered LiMnO2 , 1999 .

[38]  B. Hwang,et al.  In-situ X-ray absorption spectroscopy investigations of a layered LiNi0.65Co0.25Mn0.1O2 cathode material for rechargeable lithium batteries , 2004 .

[39]  J. Prakash,et al.  Structural Transformation of Li [ Ni0.5 − x Co2x Mn0.5 − x ] O2 ( 2x ≤ 0.1 ) Charged in High-Voltage Range ( 4.5 V ) , 2007 .

[40]  A. West,et al.  Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping , 1997 .

[41]  Xiangming He,et al.  Synthesis and characterization of LiNi0.6Mn0.4―xCoxO2 as cathode materials for Li-ion batteries , 2009 .

[42]  Yuanxiang Gu,et al.  Hollow LiNi0.8Co0.1Mn0.1O2−MgO Coaxial Fibers: Sol−Gel Method Combined with Co-electrospun Preparation and Electrochemical Properties , 2008 .

[43]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[44]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.