A P ] 1 2 Ju l 2 00 4 Long range scattering for the Wave-Schrödinger system with large wave data and small Schrödinger data
暂无分享,去创建一个
[1] A. Shimomura. Scattering Theory for the Coupled Klein-Gordon-Schrödinger Equations in Two Space Dimensions , 2005 .
[2] J. Ginibre,et al. Scattering theory for the Schrödinger equation in some external time-dependent magnetic fields , 2004, math/0401355.
[3] A. Shimomura. Modified wave operators for the coupled wave-Schrödinger equations in three space dimensions , 2003 .
[4] A. Shimomura. Modified Wave Operators for Maxwell-Schrödinger Equations in Three Space Dimensions , 2003 .
[5] J. Ginibre,et al. Long Range Scattering and Modified Wave Operators for the Maxwell-Schrödinger System I. The Case of Vanishing Asymptotic Magnetic Field , 2002, math/0206267.
[6] J. Ginibre,et al. Long Range Scattering and Modified Wave Operators for the Wave-Schrödinger System , 2001, math/0503551.
[7] J. Ginibre,et al. Long Range Scattering and Modified Wave Operators for the Wave-Schrödinger System II , 2001, math/0302247.
[8] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[9] J. Ginibre,et al. Generalized Strichartz Inequalities for the Wave Equation , 1995 .
[10] J. Ginibre,et al. Long range scattering for non-linear Schrödinger and Hartree equations in space dimensionn≥2 , 1993 .
[11] Tohru Ozawa,et al. Long range scattering for nonlinear Schrödinger equations in one space dimension , 1991 .
[12] K. Yajima. Existence of solutions for Schrödinger evolution equations , 1987 .
[13] Alain Bachelot. Problème de Cauchy pour des systèmes hyperboliques semi‐linéaires , 1984, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.
[14] A. Shimomura. Wave operators for the coupled Klein-Gordon-Schrodinger equations in two space dimensions , 2004 .
[15] Tohru Ozawa,et al. Asymptotic Behavior of Solutions for the Coupled Klein–Gordon–Schrödinger Equations , 1994 .
[16] J. Ginibre,et al. Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .