Expanders, sorting in rounds and superconcentrators of limited depth

Expanding graphs and superconcentrators are relevant to theoretical computer science in several ways. Here we use finite geometries to construct explicitly highly expanding graphs with essentially the smallest possible number of edges. Our graphs enable us to improve significantly previous results on a parallel sorting problem, by describing an explicit algorithm to sort <italic>n</italic> elements in <italic>k</italic> time units using &Ogr;(<italic>n</italic><supscrpt>αk</supscrpt>) processors, where, e.g., α<subscrpt>2</subscrpt> = 7/4. Using our graphs we can also construct efficient <italic>n</italic>-superconcentrators of limited depth. For example, we construct an <italic>n</italic> superconcentrator of depth 3 with &Ogr;(<italic>n</italic><supscrpt>4/3</supscrpt>) edges; better than the previous known results.

[1]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[2]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[3]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[4]  Pavol Hell,et al.  Parallel Sorting with Constant Time for Comparisons , 1981, SIAM J. Comput..

[5]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[6]  Roy Meshulam,et al.  A Geometric Construction of a Superconcentrator of Depth 2 , 1984, Theor. Comput. Sci..

[7]  B. Bollobás,et al.  Sorting in one round , 1981 .

[8]  R. Häggkvist,et al.  Sorting and Merging in Rounds , 1982 .

[9]  Robert E. Tarjan,et al.  Space bounds for a game on graphs , 1976, STOC '76.

[10]  Joseph JáJá,et al.  Time-space tradeoffs for some algebraic problems , 1980, STOC '80.

[11]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[12]  Maria M. Klawe,et al.  Non-existence of one-dimensional expanding graphs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[13]  Robert E. Tarjan,et al.  Asymptotically tight bounds on time-space trade-offs in a pebble game , 1982, JACM.

[14]  Martin Tompa Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties of Their Circuits , 1980, J. Comput. Syst. Sci..

[15]  Harold Abelson,et al.  A Note on Time-Space Tradeoffs for Computing Continuous Functions , 1979, Inf. Process. Lett..

[16]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[17]  Noga Alon,et al.  Eigenvalues, Expanders and Superconcentrators (Extended Abstract) , 1984, FOCS.

[18]  Nicholas Pippenger,et al.  Advances in Pebbling (Preliminary Version) , 1982, ICALP.

[19]  Noga Alon,et al.  Eigenvalues, geometric expanders, sorting in rounds, and ramsey theory , 1986, Comb..

[20]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..