Forecasting return volatility: Level shifts with varying jump probability and mean reversion

We extend the random level shift (RLS) model of Lu and Perron (2010) to the volatility of asset prices, which consists of a short memory process and a random level shift component. Motivated by empirical features, (a) we specify a time-varying probability of shifts as a function of large negative lagged returns; and (b) we incorporate a mean reverting mechanism so that the sign and magnitude of the jump component change according to the deviations of past jumps from their long run mean. This allows the possibility of forecasting the sign and magnitude of the jumps. We estimate the model using twelve different series, and compare its forecasting performance with those of a variety of competing models at various horizons. A striking feature is that the modified RLS model has the smallest mean square forecast errors in 64 of the 72 cases, while it is a close second for the other 8 cases. The improvement in forecast accuracy is often substantial, especially for medium- to long-horizon forecasts. This is strong evidence that our modified RLS model offers important gains in forecasting performance.

[1]  G. Rodríguez,et al.  Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America , 2014 .

[2]  Murad S. Taqqu,et al.  Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator , 1997 .

[3]  Pierre Perron,et al.  Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns , 2011 .

[4]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[5]  P. Sibbertsen,et al.  A Multivariate Test Against Spurious Long Memory , 2017 .

[6]  Ignacio N. Lobato,et al.  Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .

[7]  Pierre Perron,et al.  An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts , 2006 .

[8]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[9]  William R. Parke What is Fractional Integration? , 1999, Review of Economics and Statistics.

[10]  P. Perron,et al.  Modeling and forecasting stock return volatility using a random level shift model , 2010 .

[11]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[12]  Pierre Perron,et al.  Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations , 2014 .

[13]  C. Granger,et al.  Nonstationarities in Stock Returns , 2005, Review of Economics and Statistics.

[14]  A. Harvey Long memory in stochastic volatility , 2007 .

[15]  Dick J. C. van Dijk,et al.  Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity , 2004 .

[16]  P. Perron,et al.  Computation and Analysis of Multiple Structural-Change Models , 1998 .

[17]  Shinsuke Ikeda Two Scale Realized Kernels: A Univariate Case , 2015 .

[18]  N. Haldrup,et al.  Discriminating between fractional integration and spurious long memory , 2014 .

[19]  M. Laurini,et al.  A Common Jump Factor Stochastic Volatility Model , 2015 .

[20]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[21]  Pierre Perron,et al.  Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices , 2008 .

[22]  P. Perron,et al.  Testing For A Unit Root In A Time Series With A Changing Mean , 1990 .

[23]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[24]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[25]  M. Medeiros,et al.  A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries , 2008 .

[26]  Mark Podolskij,et al.  Bipower-Type Estimation in a Noisy Diffusion Setting , 2008 .

[27]  C. Brownlees,et al.  A Practical Guide to Volatility Forecasting through Calm and Storm , 2011 .

[28]  Christian Gourieroux,et al.  Memory and infrequent breaks , 2001 .

[29]  Peter Reinhard Hansen,et al.  The Model Confidence Set , 2010 .

[30]  Robert F. Engle,et al.  The Reviewof Economicsand Statistics , 1999 .

[31]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[32]  C. Granger,et al.  Varieties of long memory models , 1996 .

[33]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[34]  Mark Podolskij,et al.  Bipower-type estimation in a noisy diffusion setting☆ , 2009 .

[35]  J. Geweke,et al.  Bayesian Forecasting , 2004 .

[36]  P. Perron,et al.  The Great Crash, The Oil Price Shock And The Unit Root Hypothesis , 1989 .

[37]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[38]  Pierre Perron,et al.  Let ’ s Take a Break : Trends and Cycles in US Real GDP ∗ , 2005 .

[39]  Andrea Beltratti,et al.  Structural Change and Long Range Dependence in Volatility of Exchange Rates: Either, Neither or Both? , 2004 .

[40]  Thomas Mikosch,et al.  Changes of structure in financial time series and the GARCH model , 2004 .

[41]  Roxana Halbleib,et al.  Modelling and Forecasting Multivariate Realized Volatility , 2008 .

[42]  Pierre Perron,et al.  A Stochastic Volatility Model with Random Level Shifts and its Applications to S&P 500 and NASDAQ Return Indices , 2013 .

[43]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[44]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[45]  Pierre Perron,et al.  State Space Model with Mixtures of Normals: Specifications and Applications to International Data , 2005 .

[46]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .