Characteristics of tropopause parameters as observed with GPS radio occultation

Abstract. Characteristics of the lapse rate tropopause are analyzed globally for tropopause altitude and temperature using global positioning system (GPS) radio occultation (RO) data from late 2001 to the end of 2013. RO profiles feature high vertical resolution and excellent quality in the upper troposphere and lower stratosphere, which are key factors for tropopause determination, including multiple ones. RO data provide measurements globally and allow examination of both temporal and spatial tropopause characteristics based entirely on observational measurements. To investigate latitudinal and longitudinal tropopause characteristics, the mean annual cycle, and inter-annual variability, we use tropopauses from individual profiles as well as their statistical measures for zonal bands and 5° × 10° bins. The latitudinal structure of first tropopauses shows the well-known distribution with high (cold) tropical tropopauses and low (warm) extra-tropical tropopauses. In the transition zones (20 to 40° N/S), individual profiles reveal varying tropopause altitudes from less than 7 km to more than 17 km due to variability in the subtropical tropopause break. In this region, we also find multiple tropopauses throughout the year. Longitudinal variability is strongest at northern hemispheric mid latitudes and in the Asian monsoon region. The mean annual cycle features changes in amplitude and phase, depending on latitude. This is caused by different underlying physical processes (such as the Brewer–Dobson circulation – BDC) and atmospheric dynamics (such as the strong polar vortex in the southern hemispheric winter). Inter-annual anomalies of tropopause parameters show signatures of El Nino–Southern Oscillation (ENSO), the quasi–biennial oscillation (QBO), and the varying strength of the polar vortex, including sudden stratospheric warming (SSW) events. These results are in good agreement with previous studies and underpin the high utility of the entire RO record for investigating latitudinal, longitudinal, and temporal tropopause characteristics globally.

[1]  Dian J. Seidel,et al.  Recent widening of the tropical belt: Evidence from tropopause observations , 2007 .

[2]  Christian Rocken,et al.  Seasonal and Longitudinal Variations in the Tropical Tropopause Observed with the GPS Occultation Te , 2000 .

[3]  Robert Sausen,et al.  Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes , 2003 .

[4]  Thomas Birner,et al.  Fine‐scale structure of the extratropical tropopause region , 2006 .

[5]  D. Seidel,et al.  Variability and trends in the global tropopause estimated from radiosonde data , 2006 .

[6]  Jens Wickert,et al.  Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures , 2010 .

[7]  Klaus P. Hoinka,et al.  Statistics of the Global Tropopause Pressure , 1998 .

[8]  Jens Wickert,et al.  Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP , 2004 .

[9]  G. Nikulin,et al.  A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 , 2012 .

[10]  J. Haigh,et al.  The influence of solar variability and the quasi-biennial oscillation on lower atmospheric temperatures and sea level pressure , 2011 .

[11]  Kevin Hamilton,et al.  The quasi‐biennial oscillation , 2001 .

[12]  D. Seidel,et al.  Observational characteristics of double tropopauses , 2007 .

[13]  D. Seidel,et al.  Climatological characteristics of the tropical tropopause as revealed by radiosondes , 2001 .

[14]  Jens Wickert,et al.  GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters , 2005 .

[15]  J. R. Eyre,et al.  Retrieving temperature, water vapour and surface pressure information from refractive‐index profiles derived by radio occultation: A simulation study , 2000 .

[16]  Jens Wickert,et al.  Assessing the climate monitoring utility of Radio Occultation data: from CHAMP to FORMOSAT-3/COSMIC. , 2009 .

[17]  Ying-Hwa Kuo,et al.  The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements , 2012 .

[18]  Sukyoung Lee,et al.  Intraseasonal Variability of the Zonal-Mean Tropical Tropopause Height , 2007 .

[19]  Jens Wickert,et al.  Global tropopause height trends estimated from GPS radio occultation data , 2008 .

[20]  K. Gage,et al.  Longitudinal variations in tropical tropopause properties in relation to tropical convection and El Niño‐Southern Oscillation events , 1987 .

[21]  Robert Sausen,et al.  Identification of anthropogenic climate change using a second-generation reanalysis , 2004 .

[22]  Ying-Hwa Kuo,et al.  Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model , 2011 .

[23]  Chang-Hoi Ho,et al.  Anomalous Atmospheric Hydrologic Processes Associated with ENSO: Mechanisms of Hydrologic Cycle-Radiation Interaction , 1998 .

[24]  L. Romans,et al.  Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC‐C measurements , 2006 .

[25]  T. Birner Residual Circulation and Tropopause Structure , 2010 .

[26]  J. Angell,et al.  Quasi-Biennial Variations in Temperature, Total Ozone, and Tropopause Height , 1964 .

[27]  Brian J. Hoskins,et al.  The tropical tropopause , 1998 .

[28]  Seok-Woo Son,et al.  The Fine-Scale Structure of the Global Tropopause Derived from COSMIC GPS Radio Occultation Measurements , 2011 .

[29]  R. Anthes,et al.  Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather , 2011 .

[30]  Fei Wu,et al.  Thermal variability of the tropical tropopause region derived from GPS/MET observations , 2003 .

[31]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[32]  J. Wallace,et al.  On the cause of the annual cycle in tropical lower-stratospheric temperatures , 1994 .

[33]  G. Craig,et al.  GCM Tests of Theories for the Height of the Tropopause , 1997 .

[34]  I. M. Held On the Height of the Tropopause and the Static Stability of the Troposphere , 1982 .

[35]  Robert Sausen,et al.  Use of Changes in Tropopause Height to Detect Human Influences on Climate , 2003 .

[36]  P. Mote,et al.  Tropical tropopause layer , 2009 .

[37]  S. Feldstein,et al.  Intraseasonal Variability of the Zonal-Mean Extratropical Tropopause Height , 2007 .

[38]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[39]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[40]  Huw Lewis A robust method for tropopause altitude identification using GPS radio occultation data , 2009 .

[41]  K. Bowman,et al.  Extratropical tropopause transition layer characteristics from high-resolution sounding data , 2010 .

[42]  U. Foelsche,et al.  Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses , 2007 .

[43]  T. Birner Recent widening of the tropical belt from global tropopause statistics: Sensitivities , 2010 .

[44]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[45]  Ernest K. Smith,et al.  The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies , 1953, Proceedings of the IRE.

[46]  Barbara Scherllin-Pirscher,et al.  GPS radio occultation for climate monitoring and change detection , 2011 .

[47]  Andrew Gettelman,et al.  THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE , 2011 .

[48]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[49]  Dian J. Seidel,et al.  Observed El Niño–Southern Oscillation temperature signal in the stratosphere , 2009 .

[50]  R. Sausen,et al.  Determining the tropopause height from gridded data , 2003 .

[51]  Günther Zängl,et al.  The Tropopause in the Polar Regions , 2001 .

[52]  Jens Wickert,et al.  Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite , 2008 .

[53]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[54]  Fei Wu,et al.  Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses , 2000 .

[55]  B. Scherllin-Pirscher,et al.  Influence of changes in humidity on dry temperature in GPS RO climatologies , 2014 .