Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic‐Functionalized Suspended Gate Electrodes

Utilizing a magnetic-functionalized suspended gate with combined features of outstanding conductivity, flexibility, and magnetic properties, flexible magnetic sensor based on an organic field-effect transistor (OFET), with a high sensitivity of 115.2% mT(-1) is demonstrated. Gate engineering enables the sensing devices to possess promising applications for flexible touchless switches and spatiallyresolved magnetic-imaging elements.

[1]  Robust absolute magnetometry with organic thin-film devices , 2012, Nature communications.

[2]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[3]  K. Hata,et al.  A stretchable carbon nanotube strain sensor for human-motion detection. , 2011, Nature nanotechnology.

[4]  Gungun Lin,et al.  Stretchable Spin Valves on Elastomer Membranes by Predetermined Periodic Fracture and Random Wrinkling , 2012, Advanced materials.

[5]  Yei Hwan Jung,et al.  Stretchable silicon nanoribbon electronics for skin prosthesis , 2014, Nature Communications.

[6]  J. Salbeck,et al.  Magnetoresistive field-effect transistors based on organic donor–acceptor blends , 2012 .

[7]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[8]  B. Wiley,et al.  Solution-processed flexible polymer solar cells with silver nanowire electrodes. , 2011, ACS applied materials & interfaces.

[9]  G. Schmidt,et al.  Organic field‐effect transistors for spin‐polarized transport , 2008 .

[10]  T. Hyeon,et al.  Fabric‐Based Integrated Energy Devices for Wearable Activity Monitors , 2014, Advanced materials.

[11]  T. Saragi,et al.  Magnetic-field effects in illuminated tetracene field-effect transistors , 2012 .

[12]  J. Salbeck,et al.  Photoinduced sign change of the magnetoresistance in field-effect transistors based on a bipolar molecular glass. , 2013, Chemical communications.

[13]  Long Lin,et al.  Self-powered magnetic sensor based on a triboelectric nanogenerator. , 2012, ACS nano.

[14]  Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. , 2014, Nature nanotechnology.

[15]  Dae-Hyeong Kim,et al.  Multifunctional wearable devices for diagnosis and therapy of movement disorders. , 2014, Nature nanotechnology.

[16]  T. Saragi,et al.  Revealing the origin of magnetoresistance in unipolar amorphous organic field-effect transistors , 2014 .

[17]  Yaping Zang,et al.  Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection , 2015, Nature Communications.

[18]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[19]  Gilbert Santiago Cañón Bermúdez,et al.  Wearable Magnetic Field Sensors for Flexible Electronics , 2014, Advanced materials.

[20]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[21]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[22]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[23]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[24]  Yaping Zang,et al.  Advances of flexible pressure sensors toward artificial intelligence and health care applications , 2015 .

[25]  Daoben Zhu,et al.  Multi‐Functional Integration of Organic Field‐Effect Transistors (OFETs): Advances and Perspectives , 2013, Advanced materials.

[26]  F. Golmar,et al.  Room-temperature air-stable spin transport in bathocuproine-based spin valves , 2013, Nature Communications.

[27]  Sanat S Bhole,et al.  Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin , 2014, Science.

[28]  O. E. Pérez,et al.  Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[29]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[30]  Daniil Karnaushenko,et al.  Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics , 2015, Advanced materials.

[31]  Zhibin Yu,et al.  Silver Nanowire‐Polymer Composite Electrodes for Efficient Polymer Solar Cells , 2011, Advanced materials.

[32]  Daniil Karnaushenko,et al.  High-Performance Magnetic Sensorics for Printable and Flexible Electronics , 2014, Advanced materials.

[33]  J. Schenck Safety of Strong, Static Magnetic Fields , 2000, Journal of magnetic resonance imaging : JMRI.

[34]  Sung-hoon Ahn,et al.  A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. , 2012, Nature materials.

[35]  Xiangnan Sun,et al.  Flexible semi-transparent organic spin valve based on bathocuproine , 2014 .