Optimal mesh signal transforms

We describe a simple autoregressive model for 3D mesh geometry based on linear prediction. Assuming a Gaussian error term, we show that the resulting probabilistic distribution is a multivariate Gaussian, which may be singular. Furthermore, if the prediction operator is symmetric positive semi-definite, then its eigenvectors coincide with that of the covariance matrix for the distribution. This implies that the mesh signal transform induced by the prediction operator is optimal, with respect to a specific class of mesh distributions and in the sense of basis restriction errors.

[1]  Craig Gotsman,et al.  On the optimality of spectral compression of mesh data , 2005, TOGS.

[2]  M. Ben-Chen,et al.  On the Optimality of Spectral Compression of Meshes , 2003 .

[3]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[4]  S. Mallat A wavelet tour of signal processing , 1998 .

[5]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[6]  E. Fiume,et al.  Shape matching of 3D contours using normalized Fourier descriptors , 2002, Proceedings SMI. Shape Modeling International 2002.

[7]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[8]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[9]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[10]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[11]  M. Bilodeau,et al.  Theory of multivariate statistics , 1999 .

[12]  W. A. Ericson Introduction to Mathematical Statistics, 4th Edition , 1972 .

[13]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[14]  Craig Gotsman,et al.  3D Mesh Compression Using Fixed Spectral Bases , 2001, Graphics Interface.

[15]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[16]  Luiz Velho,et al.  Using Semi-Regular 4–8 Meshes for Subdivision Surfaces , 2000, J. Graphics, GPU, & Game Tools.

[17]  Martin Isenburg,et al.  Connectivity shapes , 2001, Proceedings Visualization, 2001. VIS '01..

[18]  Hao Zhang,et al.  Butterworth filtering and implicit fairing of irregular meshes , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[19]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[20]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[21]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[22]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[23]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[24]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[25]  Marc Alexa Wiener Filtering of Meshes , 2002, Shape Modeling International.

[26]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[27]  David T. McWherter,et al.  Transformation Invariant Shape Similarity Comparison of Solid Models , 2001 .

[28]  Ryutarou Ohbuchi,et al.  Watermarking 2D vector maps in the mesh-spectral domain , 2003, 2003 Shape Modeling International..

[29]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.