Phase transitions in the condition number distribution of Gaussian random matrices

We study the statistics of the condition number κ=λ_{max}/λ_{min} (the ratio between largest and smallest squared singular values) of N×M Gaussian random matrices. Using a Coulomb fluid technique, we derive analytically and for large N the cumulative P(κx) distributions of κ. We find that these distributions decay as P(κx)≈exp[-βNΦ_{+}(x)], where β is the Dyson index of the ensemble. The left and right rate functions Φ_{±}(x) are independent of β and calculated exactly for any choice of the rectangularity parameter α=M/N-1>0. Interestingly, they show a weak nonanalytic behavior at their minimum 〈κ〉 (corresponding to the average condition number), a direct consequence of a phase transition in the associated Coulomb fluid problem. Matching the behavior of the rate functions around 〈κ〉, we determine exactly the scale of typical fluctuations ∼O(N^{-2/3}) and the tails of the limiting distribution of κ. The analytical results are in excellent agreement with numerical simulations.

[1]  Christophe Texier,et al.  Wigner time-delay distribution in chaotic cavities and freezing transition. , 2013, Physical review letters.

[2]  Jean-Marc Azaïs,et al.  Upper and Lower Bounds for the Tails of the Distribution of the Condition Number of a Gaussian Matrix , 2005, SIAM J. Matrix Anal. Appl..

[3]  S. Majumdar,et al.  Top eigenvalue of a random matrix: large deviations and third order phase transition , 2013, 1311.0580.

[4]  Massimo Vergassola,et al.  Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices. , 2008, Physical review letters.

[5]  S. Majumdar,et al.  Large deviations of the maximum eigenvalue in Wishart random matrices , 2007, cond-mat/0701371.

[6]  J. Neumann,et al.  Numerical inverting of matrices of high order. II , 1951 .

[7]  Yulan Liang,et al.  Computational Intelligence in Medical Informatics , 2008, Studies in Computational Intelligence.

[8]  Frederick W. Vook,et al.  Wideband MIMO mobile impulse response measurements at 3.7 GHz , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[9]  Arogyaswami Paulraj,et al.  Capacity obtained from multiple-input multiple-output channel measurements in fixed wireless environments at 2.5 GHz , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[10]  M. He,et al.  HERE , 2004 .

[11]  S. Majumdar,et al.  Extreme value statistics of eigenvalues of Gaussian random matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Naim Dahnoun,et al.  Studies in Computational Intelligence , 2013 .

[13]  P. Hsu ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS , 1939 .

[14]  Josef A. Nossek,et al.  On the condition number distribution of complex wishart matrices , 2010, IEEE Transactions on Communications.

[15]  R. Fisher THE SAMPLING DISTRIBUTION OF SOME STATISTICS OBTAINED FROM NON‐LINEAR EQUATIONS , 1939 .

[16]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[17]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[18]  Koji Hukushima,et al.  Multicanonical sampling of rare events in random matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. Suppan,et al.  Harmonisation within atmospheric dispersion modelling for regulatory purposes , 2004 .

[20]  S. Majumdar,et al.  Large deviations of extreme eigenvalues of random matrices. , 2006, Physical review letters.

[21]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[23]  Yonghong Zeng,et al.  Eigenvalue-based spectrum sensing algorithms for cognitive radio , 2008, IEEE Transactions on Communications.

[24]  WILLIAM ANDERSON,et al.  The Exact Distribution of the Condition Number of a Gaussian Matrix , 2009, SIAM J. Matrix Anal. Appl..

[25]  Dirk Wübben,et al.  MMSE-based lattice-reduction for near-ML detection of MIMO systems , 2004, ITG Workshop on Smart Antennas (IEEE Cat. No.04EX802).

[26]  Olav Tirkkonen,et al.  Approximate Condition Number Distribution of Complex Non-Central Correlated Wishart Matrices , 2011, 2011 IEEE International Conference on Communications (ICC).

[27]  J. Neumann,et al.  Numerical inverting of matrices of high order , 1947 .

[28]  Pascal Bianchi,et al.  Cooperative spectrum sensing using random matrix theory , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[29]  Danning Li,et al.  Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations , 2013, 1309.3882.

[30]  Sivan Toledo,et al.  Iterative Spectral Condition-Number Estimation , 2013 .

[31]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[32]  J. Wishart THE GENERALISED PRODUCT MOMENT DISTRIBUTION IN SAMPLES FROM A NORMAL MULTIVARIATE POPULATION , 1928 .

[33]  Zizhong Chen,et al.  Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[34]  Gerald Matz,et al.  Low-Complexity and Full-Diversity MIMO Detection Based on Condition Number Thresholding , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[35]  A. Edelman On the distribution of a scaled condition number , 1992 .

[36]  Tharmalingam Ratnarajah,et al.  Eigenvalues and Condition Numbers of Complex Random Matrices , 2005, SIAM J. Matrix Anal. Appl..

[37]  Franz Hlawatsch,et al.  Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection , 2003, IEEE Trans. Signal Process..

[38]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[39]  Andreas Binder,et al.  A workout in computational finance , 2013 .

[40]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[41]  J. Demmel The Probability That a Numerical, Analysis Problem Is Difficult , 2013 .

[42]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[43]  Roberto Garello,et al.  Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices , 2009, IEEE Communications Letters.

[44]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[45]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[46]  Isaac Pérez Castillo,et al.  Large deviations of the smallest eigenvalue of the Wishart-Laguerre ensemble. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.