CO2 dynamics in a metal-organic framework with open metal sites.

Metal-organic frameworks (MOFs) with open metal sites are promising candidates for CO(2) capture from dry flue gas. We applied in situ(13)C NMR spectroscopy to investigate CO(2) adsorbed in Mg(2)(dobdc) (H(4)dobdc = 2,5-dihydroxyterephthalic acid; Mg-MOF-74, CPO-27-Mg), a key MOF in which exposed Mg(2+) cation sites give rise to exceptional CO(2) capture properties. Analysis of the resulting spectra reveals details of the binding and CO(2) rotational motion within the material. The dynamics of the motional processes are evaluated via analysis of the NMR line shapes and relaxation times observed between 12 and 400 K. These results form stringent and quantifiable metrics for computer simulations that seek to screen and improve the design of new MOFs for CO(2) capture.

[1]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[2]  J. Reimer,et al.  Utility of a tuneless plug and play transmission line probe. , 2012, Journal of magnetic resonance.

[3]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[4]  B. Smit,et al.  CO2 capture by metal-organic frameworks with van der Waals density functionals. , 2012, The journal of physical chemistry. A.

[5]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[6]  J. Long,et al.  CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc) , 2012 .

[7]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[8]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[9]  O. Yaghi,et al.  Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network , 2011 .

[10]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[11]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[12]  Wei Zhou,et al.  Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study , 2010 .

[13]  C. Arean,et al.  Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74 , 2010 .

[14]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[15]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[16]  Berend Smit,et al.  Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[17]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[18]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[19]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[20]  H. Fjellvåg,et al.  Structural changes and coordinatively unsaturated metal atoms on dehydration of honeycomb analogous microporous metal-organic frameworks. , 2008, Chemistry.

[21]  T. Ueda,et al.  Dynamics of CO2 molecules confined in the micropores of solids as studied by 13C NMR , 2005 .

[22]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[23]  H. Spiess,et al.  The NMR-WEBLAB: An internet approach to NMR lineshape analysis , 2001 .

[24]  Clifford R. Bowers,et al.  Cross polarization from laser-polarized solid xenon to 13CO2 by low-field thermal mixing , 1993 .

[25]  C. Ratcliffe,et al.  Proton and carbon-13 NMR studies on carbon dioxide hydrate , 1986 .

[26]  E. Purcell,et al.  Relaxation Effects in Nuclear Magnetic Resonance Absorption , 1948 .

[27]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[28]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[29]  L. Holmes,et al.  ENCYCLOPEDIA OF SPECTROSCOPY AND SPECTROMETRY , 2001 .

[30]  John C. Lindon,et al.  Encyclopedia of spectroscopy and spectrometry , 2000 .