$(1+)$-complemented, $(1+)$-isomorphic copies of $L_{1}$ in dual Banach spaces
暂无分享,去创建一个
[1] W. Johnson. A complementary universal conjugate Banach space and its relation to the approximation problem , 1972 .
[2] C. Stegall,et al. Banach spaces whose duals contain complemented subspaces isomorphic to C[0, 1] , 1973 .
[3] A. Pełczyński. On Banach spaces containing L1 , 1968 .
[4] Joram Lindenstrauss,et al. Classical Banach spaces I: Sequence Spaces. , 1977 .
[5] M. Girardi,et al. Dual Banach spaces which contain an isometric copy of $L_1$ , 2000, math/0004168.
[6] Sebastien Gouezel,et al. Lp spaces , 2016, Arch. Formal Proofs.
[7] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[8] Joram Lindenstrauss,et al. On nonseparable reflexive Banach spaces , 1966 .
[9] ON QUANTIFICATION OF WEAK SEQUENTIAL COMPLETENESS , 2010, 1011.6553.
[10] Hana Bendov'a,et al. QUANTIFICATION OF THE BANACH-SAKS PROPERTY , 2014, 1406.0684.
[11] Quantitative Dunford–Pettis property , 2011, 1110.1243.
[12] C. Stegall. Banach Spaces Whose Duals Contain l 1 (Γ) With Applications to the Study of Dual L 1 (μ) Spaces , 1973 .
[13] J. Hagler. Some more Banach spaces which contain l , 1973 .
[14] F. Albiac,et al. Topics in Banach space theory , 2006 .