Comparing Technical and Fundamental Indicators in Stock Price Forecasting

This paper evaluates whether Fundamental or Technical analysis is better when forecasting stock prices with machine learning models; further, it considers whether combined use of the two approaches is beneficial. Tests run on 140 companies from the S&P 500 indicate that models using indicators based on Fundamental analysis outperform those using indicators from Technical analysis with the level of outperformance varying across industries. Furthermore, in over 95% of cases, using Combined indicators results in lower RMSE compared to using Fundamental or Technical indicators alone.

[1]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[2]  Manminder Singh Saluja,et al.  Stock Direction Forecasting Techniques: An Empirical Study Combining Machine Learning System with Market Indicators in the Indian Context , 2014 .

[3]  Philip J. Romero,et al.  What Hedge Funds Really Do: An Introduction to Portfolio Management , 2014 .

[4]  Mario Mustilli,et al.  Efficient Market Hypothesis and Fundamental Analysis: An Empirical Test in the European Securities Market , 2016 .

[5]  Francesco Kriegel,et al.  Technical , 1960, Indian Journal of Nuclear Medicine : IJNM : The Official Journal of the Society of Nuclear Medicine, India.

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  Cheng-Few Lee,et al.  Technical, Fundamental, and Combined Information for Separating Winners from Losers , 2015, Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning.

[8]  Noelle Foreshaw Options… , 2010 .

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Bruce J. Vanstone,et al.  An empirical methodology for developing stockmarket trading systems using artificial neural networks , 2009, Expert Syst. Appl..

[11]  Kimon P. Valavanis,et al.  Surveying stock market forecasting techniques - Part II: Soft computing methods , 2009, Expert Syst. Appl..

[12]  H. Hassan,et al.  Fundamental Analysis Vs Technical Analysis in The Egyptian Stock Exchange - Empirical Study , 2015 .

[13]  Fadel M. Megahed,et al.  Stock market one-day ahead movement prediction using disparate data sources , 2017, Expert Syst. Appl..

[14]  Burton G. Malkiel,et al.  A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing , 2020 .

[15]  Max Kuhn,et al.  Applied Predictive Modeling , 2013 .

[16]  Matt Krantz Fundamental Analysis For Dummies , 2009 .

[17]  Bruce J Vanstone,et al.  A survey of the application of soft computing to investment and financial trading , 2003 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[21]  Luís Torgo,et al.  Data Mining with R: Learning with Case Studies , 2010 .

[22]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[23]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[24]  Laurens Swinkels,et al.  The Economic Value of Fundamental and Technical Information in Emerging Currency Markets , 2007 .

[25]  Sahil Shah,et al.  Predicting stock market index using fusion of machine learning techniques , 2015, Expert Syst. Appl..

[26]  Bruce J. Vanstone,et al.  Financial time series forecasting with machine learning techniques: a survey , 2010, ESANN.

[27]  Barbara Rockefeller Technical Analysis For Dummies , 2004 .

[28]  Adriano Lorena Inácio de Oliveira,et al.  Expert Systems With Applications , 2022 .

[29]  Thomas Oberlechner,et al.  Importance of technical and fundamental analysis in the European foreign exchange market , 2001 .

[30]  Emma Schultz,et al.  Fundamental and Technical Analysis: Substitutes or Complements? , 2009 .

[31]  A. Lo Adaptive Markets: Financial Evolution at the Speed of Thought , 2017 .

[32]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[33]  Stefan Lessmann,et al.  Bridging the divide in financial market forecasting: machine learners vs. financial economists , 2016, Expert Syst. Appl..